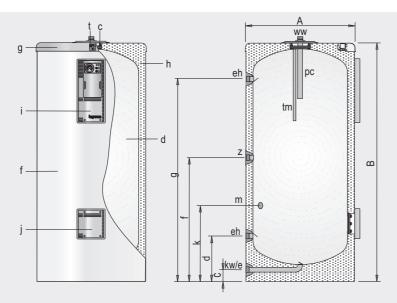
CORAL VITRO

lapesa

• Información Técnica

•	Depósitos en acero vitrificado para producción y acumulación de agua caliente sanitaria Descripción	3 a 26
•	Instalación hidráulica Esquemas de instalación	
	Normas de instalación	27 a 32
٠	Calentamiento eléctrico Resistencias de calentamiento eléctrico Paneles de control, esquemas eléctricos	33 a 36
•	Producción de A.C.S.	
	Curvas de producción	37 a 72
•	Unidad de suministro	
	Complementos	73 a 78



Depósitos para producción y acumulación de A.C.S.

•	Modelos para acumulación CV-200500-R CV-750 /1000-R	_ 4 _ 5
•	Modelos con boca lateral DN400 para acumulación CV-800 /1000-RB CV-1500-RB	
•	Modelos para energía solar distribuida CV-80300-M1S	_ 8
•	Modelos con un serpentín, inst. mural CV-90/120/160-M1M	9
•	Modelos con un serpentín, inst. mural o suelo CV-110/150-M1	10
•	Modelos con un serpentín CV-200500-M1 CV-750 /1000-M1	11 12
•	Modelos con boca lateral DN400 y un serpentín CV-800 /1000-M1B CV-1500-M1B	13 14
•	Modelos con dos serpentines CV-300500-M2	
•	Modelos con boca lateral DN400 y dos serpentines CV-800 /1000-M2B CV-1500-M2B	_ 17 _ 18
•	Modelos con serpentín de alto rendimiento, inst. mural CV-160-HL/M	_ 19
•	Modelos con serpentín de alto rendimiento CV-200500-HL CV-750 /1000-HL	_20 _21
٠	Modelos con boca lateral DN400 y serp. de alto rendimiento CV-800/1000-HLB	_22
•	Modelos con dos serpentines de alto rendimiento CV-350-HL/DUO	_23
٠	Modelos multifunción para instalación combinada CV-6001000-P	_24
•	Modelos multifunción para instalación combinada y dos serpentines CV-800/1000-P/DUO	_ 25
•	Modelos multifunción con grupo hidráulico y regulador CV-150500-GS	_26

para acumulación de A.C.S.

- c Boca de inspección
- d Depósito acumulador A.C.S.
- f Forro externo
- g Cubierta superior
- h Aislamiento térmico
- i Panel de control
- j Boca lateral auxiliar
- pc- Protección catódica
- tm -Sonda de sensores
- t Medidor de carga del ánodo

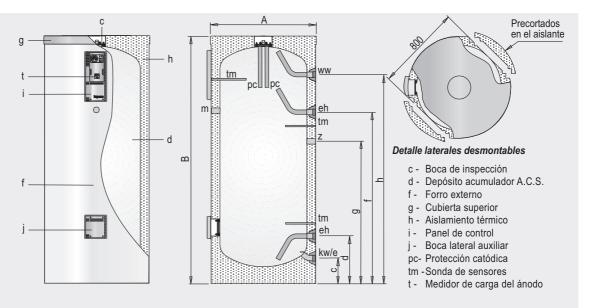
Descripción

Depósitos para acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

Capacidades de 200, 300 y 500 litros.

Incorporan de serie panel de control modelo "T" con termómetro, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito. Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas de color gris RAL 7035.


El depósito se suministra completamente acabado, probado y con todos los componentes montados.

aracterísticas técnicas /Conexiones	/Dimensiones	CV-200-R	CV-300-R	CV-500-R
Capacidad de A.C.S.	litros	200	300	500
emperatura máxima depósito de A.C.S.	°C	90	90	90
Presión máxima depósito de A.C.S.	bar	8	8	8
Peso en vacío (aprox.)	Kg	70	90	130
w/ e: Entrada agua fría/ desagüe	"GAS/M	1	1	1
rw: Salida A.C.S.	"GAS/M	1	1	1
: Recirculación	"GAS/M	1-1/4	1-1/4	1-1/4
h: Conexión lateral	"GAS/M	1-1/4	1-1/4	1-1/4
n: Conexión sensores laterales	"GAS/M	3/4	3/4	3/4
Cota A: Diámetro exterior	mm	620	620	770
Cota B: Longitud total	mm	1205	1685	1690
Cota c:	mm	85	85	85
Cota d:	mm	315	315	355
Cota f:	mm	530	770	750
Cota g:	mm	975	1455	1415
Cota k:	mm	400	400	440

ErP		CV-200-R	CV-300-R	CV-500-R
Pérdidas estáticas	W	56	67	93
Clase de eficiencia energética		В	В	С
Volumen	I.	197	292	490

lapesa

para acumulación de A.C.S.

Descripción

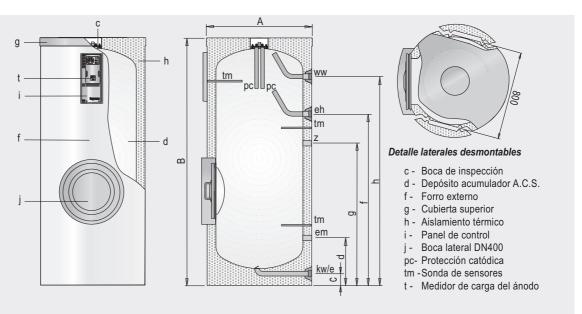
Depósitos para acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

Capacidades de **750** y **1000** litros. Disponen de conexiones laterales para la incorporación de intercambiador de placas o resistencias eléctricas de calentamiento, como sistemas producción de A.C.S.

Incorporan de serie panel de control modelo "T" con termómetro, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito. Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC, con sistema desmontables de los laterales, para permitir su paso por puertas de 800 mm. de anchura.

Acabado exterior con forro acolchado desmontable y tapas en color gris RAL 7035.

Suministro


El depósito se suministra completamente acabado, probado y con todos los componentes montados.

aracterísticas té cnicas /Conexiones	s /Dimensiones	CV-750-R	CV-1000-R
apacidad de A.C.S.	litros	750	1000
emperatura máxima depósito de A.C.S.	°C	90	90
resión máxima depósito de A.C.S.	bar	8	8
eso en vacío (aprox.)	Kg	170	200
w/e: Entrada agua fría / desagüe	"GAS/M	1-1/4	1-1/4
w: Salida A.C.S.	"GAS/M	1-1/2	1-1/2
Recirculación	"GAS/H	1-1/2	1-1/2
h: Conexión lateral	"GAS/M	1-1/2	1-1/2
: Conexión lateral	"GAS/H	1-1/2	1-1/2
ota A: Diámetro exterior	mm	950	950
ota B: Longitud total	mm	1840	2250
ota c:	mm	100	240
ota d:	mm	300	440
ota f:	mm	1280	1570
ota g:	mm	1020	1310
ota h:	mm	1510	1900

ErP		CV-750-R	CV-1000-R
Pérdidas estáticas	W	89	115
Clase de eficiencia energética		В	С
Volumen	I.	750	1000

para acumulación de A.C.S.

Descripción

Depósitos para acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

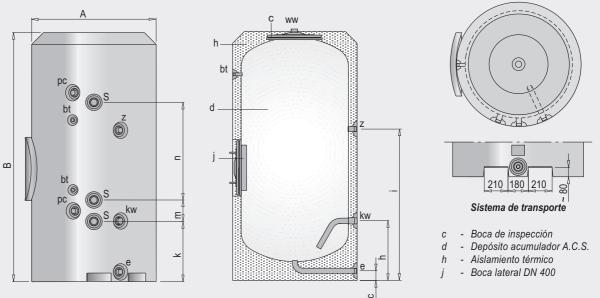
Capacidades de **800** y **1000** litros. Disponen de conexiones laterales para la incorporación de intercambiador de placas o resistencias eléctricas de calentamiento, como sistemas producción de A.C.S.

Incorporan de serie panel de control modelo "T" con termómetro, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito. Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC, con sistema desmontables de los laterales, para permitir su paso por puertas de 800 mm. de anchura.

Acabado exterior con forro acolchado desmontable y tapas en color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


aracterísticas técnicas /Conexiones	/Dimensiones	CV-800-RB	CV-1000-RB
apacidad de A.C.S.	litros	800	1000
emperatura máxima depósito de A.C.S.	°C	90	90
resión máxima depósito de A.C.S.	bar	8	8
eso en vacío (aprox.)	Kg	170	200
w/e: Entrada agua fría / desagüe	"GAS/M	1-1/4	1-1/4
w: Salida A.C.S.	"GAS/M	1-1/2	1-1/2
Recirculación	"GAS/H	1-1/2	1-1/2
h: Conexión lateral	"GAS/M	1-1/2	1-1/2
m: Conexión lateral	"GAS/H	1-1/2	1-1/2
ota A: Diámetro exterior	mm	950	950
ota B: Longitud total	mm	1840	2250
ota c:	mm	100	140
ota d:	mm	400	440
ota f:	mm	1330	1570
ota g:	mm	1090	1310
ota h:	mm	1560	1900

ErP		CV-800-RB	CV-1000-RB
Pérdidas estáticas	W	97	125
Clase de eficiencia energética		В	С
Volumen	l.	800	1000

Depósitos acumuladores de 1500 litros

con boca lateral DN400, para acumulación de A.C.S.

Descripción

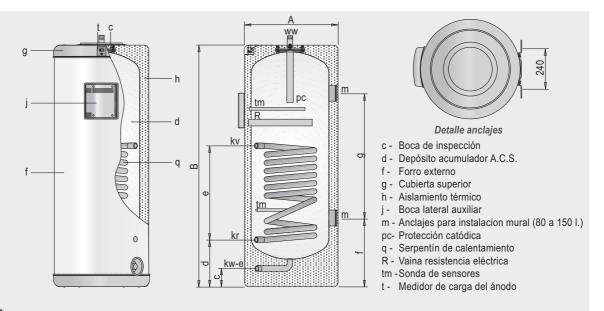
Depósitos para acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

Capacidad de 1500 litros.

Disponen de conexiones laterales para la incorporación de intercambiador de placas o resistencias eléctricas de calentamiento, como sistema de producción de A.C.S.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Suministro


Kit de protección catódica por ánodos de magnesio para montar en la instalación del depósito.

Características técnicas /Conexiones /	Dimensiones	CV-1500-RB
Capacidad de A.C.S.	litros	1500
Temperatura máxima depósito de A.C.S.	°C	90
Presión máxima depósito de A.C.S.	bar	8
Peso en vacío (aprox.)	Kg	380
e: Desagüe	"GAS/M	1-1/2
kw: Entrada agua fría	"GAS/M	2
vw: Salida A.C.S.	"GAS/M	2
z: Recirculación	"GAS/M	1-1/2
nt: Conexión sensores	"GAS/M	3/4
S: Conexión lateral	"GAS/M	2
oc: Conexión ánodo	"GAS/M	1-1/2
Cota A:Diámetro exterior	mm	1160
Cota B: Longitud total	mm	2320
Cota c:	mm	150
Cota h:	mm	631
Cota i:	mm	1471
Cota k:	mm	621
Cota m:	mm	200
Cota n:	mm	850

ErP		CV-1500-RB
Pérdidas estáticas	W	169
Clase de eficiencia energética		С
Volumen	I.	1500

para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de agua caliente sanitaria con serpentín. Fabricados en **acero vitrificado**, s/DIN 4753. Capacidades:

-Para instalación mural y vertical sobre suelo: 80, 110 y 150 litros. Incluyen soportes murales.

-Para instalación vertical sobre suelo: 200 y 300 litros.

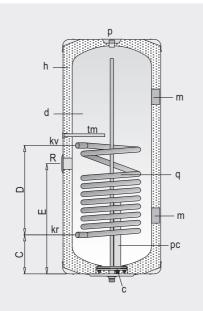
Incorporan de serie protección catódica con ánodo de magnesio y medidor de carga.

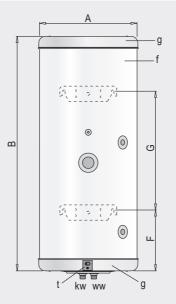
Aislados térmicamente con espuma de PU inyectado en molde, libre de CFC y acabado exterior con forro acolchado desmontable, blanco RAL 9016 y cubiertas en gris RAL 7035.

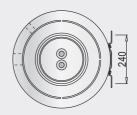
Además de la vaina superior correspondiente al alojamiento del termostato, todos los modelos van equipados con una segunda vaina en la parte inferior del depósito acumulador, para la utilización de una sonda diferencial, como elemento regulador en combinación con los colectores solares. Las conexiones hidráulicas del depósito acumulador, tanto para el serpentín como para el circuito secundario de ACS, están dispuestas para facilitar al máximo la instalación del depósito dentro de armarios, donde el espacio es especialmente reducido.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Dimensiones / Conexiones		CV-80-M1S	CV-110-M1S	CV-150-M1S	CV-200-M1S	CV-300-M1S
Capacidad de A.C.S.	litros	80	110	150	200	300
Temperatura máxima depósito de A.C.S.	°C	90	90	90	90	90
Presión máxima depósito de A.C.S.	bar	8	8	8	8	8
Temperatura máxima circuito de calentamiento	°C	200	200	200	200	200
Presión máxima circuito de calentamiento	bar	25	25	25	25	25
Superficie de intercambio circuito de calentamient		0.3	0.5	0.6	0.8	1.3
Superficie de captador máxima recomendada	m ²	1.5	2	3	4	6
Peso en vacío (aprox.)	Kg	43	51	65	72	91
kw-e:Entrada agua fría / desagüe	'GAS/M	3/4	3/4	3/4	1	1
ww: Salida A.C.S.	'GAS/M	3/4	3/4	3/4	1	1
sv: Avance solar	"GAS/H	1/2	1/2	1/2	1/2	1/2
sr: Retorno solar	"GAS/H	1/2	1/2	1/2	1/2	1/2
Cota A: Diámetro exterior	mm	480	480	560	620	620
Cota B: Longitud total	mm	935	1155	1265	1205	1685
Cota c:	mm	110	110	120	85	85
Cota d:	mm	325	325	350	325	325
Cota e:	mm	280	400	440	480	720
Cota f: (+/-5)	mm	350	350	370	-	-
Cota g: (+/-5)	mm	365	585	735	-	-


ErP		CV-80-M1S	CV-110-M1S	CV-150-M1S	CV-200-M1S	CV-300-M1S
Pérdidas estáticas	W	46	46	44	56	67
Clase de eficiencia energética		В	В	В	В	В
Volumen	1.	88	107	149	197	292


Depósitos de 90, 120 y 160 litros con un serpentín

Instalación mural, para producción y acumulación de A.C.S.

Detalle anclajes

- c- Boca de inspección
- d- Depósito acumulador A.C.S.
- f- Forro externo
- g- Cubiertas
- h- Aislamiento térmico
- pc-Protección catódica
- q Serpentín de calentamiento
- t Medidor de carga del ánodo
- tm-Sonda de sensores
- m- Anclajes para instalación mural

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación exclusivamente mural con las conexiones en la parte inferior. Fabricado en **acero** *vitrificado*, s/DIN 4753.

Capacidades de 90, 120 y 160 litros, con un serpentín interno para producción de A.C.S.

Incorporan de serie ánodo de magnesio con medidor de carga, para la protección catódica del depósito.

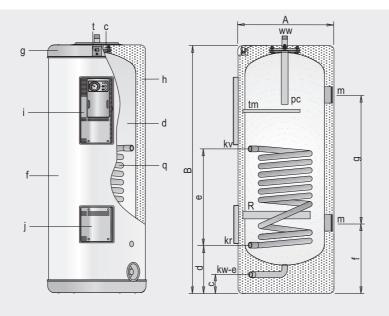
Disponen de conexión lateral para la incorporación de resistencia eléctrica de calentamiento, como sistema de apoyo.

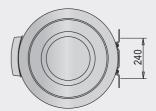
Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Características técnicas / Conexiones / Dim	ensiones	CV-90-M1/M	CV-120-M1/M	CV-160-M1/M
Capacidad de A.C.S.	1	90	120	160
Temperatura máxima depósito de A.C.S.	°C	90	90	90
Presión máxima depósito de A.C.S.	bar	8	8	8
Temperatura máxima circuito de calentamiento	°C	200	200	200
Presión máxima circuito de calentamiento	bar	25	25	25
Superficie de intercambio circuito de calentamiento	m^2	0.31	0.63	0.79
Peso en vacío	Kg	44	56	65
kw: Entrada agua fría	"GAS/M	3/4	3/4	3/4
ww: Salida A.C.S.	"GAS/M	3/4	3/4	3/4
kv: Avance circuito primario	"GAS/H	1/2	1/2	1/2
kr: Retorno circuito primario	"GAS/H	1/2	1/2	1/2
R: Conexión resistencia roscada	"GAS/H	1-1/2	1-1/2	1-1/2
o: Conexión purgador	"GAS/M	3/4	3/4	3/4
Cota A:Diámetro exterior	mm	480	480	560
Cota B: Longitud total	mm	850	1150	1095
Cota C:	mm	192	192	207
Cota D:	mm	280	440	480
Cota E:	mm	382	542	597
Cota F (+/-5):	mm	247	287	235
Cota G (+/-5):	mm	365	585	635


ErP		CV-90-M1/M	CV-120-M1/M	CV-160-M1/M	
Pérdidas estáticas	W	46	50	47	
Clase de eficiencia energética		В	В	В	
Volumen	l.	88	118	156	

Depósitos de 110 y 150 litros con un serpentín

lapesa

Inst. mural o suelo, para producción y acumulación de A.C.S.

Detalle anclajes

- c Boca de inspección
- d Depósito acumulador A.C.S.
- f Forro externo
- g Cubierta superior
- h Aislamiento térmico
- i Panel de control
- i Boca lateral auxiliar
- m Anclajes para instalación mural
- pc- Protección catódica
- q Serpentín de calentamiento
- R Vaina resistencia eléctrica
- tm -Sonda de sensores
- t Medidor de carga del ánodo

Descripción

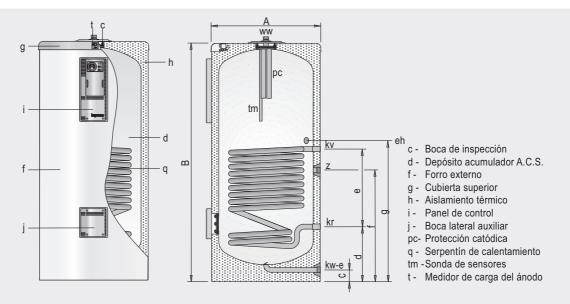
Depósitos para producción y acumulación de A.C.S., en instalación vertical mural o vertical sobre suelo. Fabricado en **acero vitrificado**, **s/DIN 4753**. Capacidades de **110** y **150** litros, con un serpentín interno para producción de A.C.S.

Incorporan de serie panel de control modelo "TS" con termómetro, termostato de regulación de temperatura y piloto indicador de funcionamiento, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas color gris RAL 7035.

Suministro


El depósito se suministra completamente acabado, probado y con todos los componentes montados.

Características técnicas /Conexiones /E	CV-110-M1	CV-150-M1	
Capacidad de A.C.S.	litros	110	150
Temperatura máxima depósito de A.C.S.	°C	90	90
Presión máxima depósito de A.C.S.	bar	8	8
Temperatura máxima circuito de calentamiento	°C	200	200
Presión máxima circuito de calentamiento	bar	25	25
Superficie de intercambio circuito de calentamie	nto m²	0.6	0.8
Peso en vacío (aprox.)	Kg	58	70
	#0.40# <i>4</i>	244	0//
kw/e: Entrada agua fría / desagüe	"GAS/M	3/4	3/4
vw: Salida A.C.S.	"GAS/M	3/4	3/4
kv: Avance circuito primario	"GAS/H	1/2	1/2
r: Retorno circuito primario	"GAS/H	1/2	1/2
Cota A: Diámetro exterior	mm	480	560
	mm	1155	1265
Cota B: Longitud total	mm		
Cota c:	mm	115	115
Cota d:	mm	325	350
Cota e:	mm	440	480
Cota f (+/-5):	mm	350	370
Cota g(+/-5):	mm	585	635

ErP		CV-110-M1	CV-150-M1
Pérdidas estáticas	W	46	44
Clase de eficiencia energética		В	В
Volumen	l.	107	149

para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

Capacidades de 200, 300 y 500 litros, con un serpentín interno para producción de A.C.S.

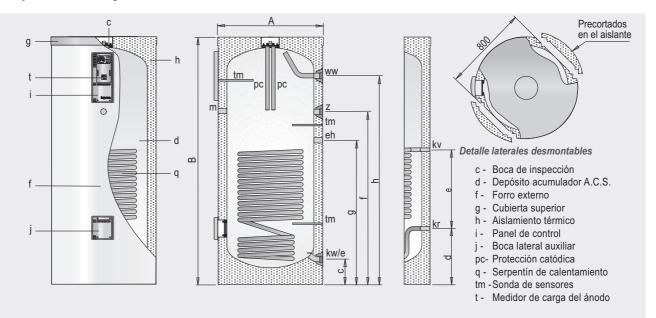
Incorporan de serie panel de control modelo "TS" con termómetro, termostato de regulación de temperatura y piloto indicador de funcionamiento, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


arac	terísticas técnicas /Conexiones/Dime	ensiones	CV-200-M1	CV-300-M1	CV-500-M1
Capaci	idad de A.C.S.	litros	200	300	500
Гетре	ratura máxima depósito de A.C.S.	°C	90	90	90
Presiói	n máxima depósito de A.C.S.	bar	8	8	8
Гетре	ratura máxima circuito de calentamiento	°C	200	200	200
Presiói	n máxima circuito de calentamiento	bar	25	25	25
Superf	icie de intercambio circuito de calentamiento	m ²	1.4	1.8	2.0
Peso e	en vacío (aprox.)	Kg	85	115	160
	, , ,	Ū			
w/e:	Entrada agua fría / desagüe	"GAS/M	1	1	1
vw:	Salida A.C.S.	"GAS/M	1	1	1
:::	Recirculación	"GAS/M	1	1	1
(V:	Avance circuito primario	"GAS/H	1	1	1
r:	Retorno circuito primario	"GAS/H	1	1	1
eh:	Conexión lateral	"GAS/M	-	2	2
Cota A	: Diámetro exterior	mm	620	620	770
Cota B	: Longitud total	mm	1205	1685	1690
Cota c.	:	mm	85	85	85
Cota d		mm	350	350	390
Cota e	:	mm	555	710	550
Cota f:		mm	755	910	790
Cota g		mm	965	1120	1000

ErP		CV-200-M1	CV-300-M1	CV-500-M1
Pérdidas estáticas	W	56	67	93
Clase de eficiencia energética		В	В	С
Volumen	I.	197	292	490

Depósitos de 750 y 1000 litros con un serpentín

lapesa

para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

Capacidades de 750 y 1000 litros, con un serpentín interno para producción de A.C.S.

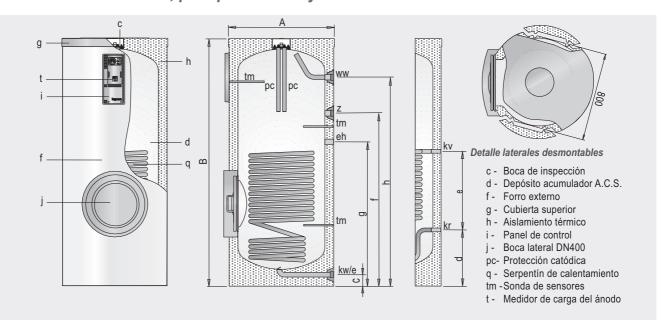
Incorporan de serie, panel de control modelo "TS" con termómetro, termostato de regulación de temperatura y piloto indicador de funcionamiento, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC, con sistema desmontable de los laterales, para permitir su paso por puertas de 800 mm. de anchura.

Acabado exterior con forro acolchado desmontable y tapas en color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Carac	cterísticas técnicas /Conexiones/Dime	ensiones	CV-750-M1	CV-1000-M1
Сарас	idad de A.C.S.	litros	750	1000
Тетре	eratura máxima depósito de A.C.S.	°C	90	90
Presió	n máxima depósito de A.C.S.	bar	8	8
Тетре	eratura máxima circuito de calentamiento	°C	200	200
Presió	n máxima circuito de calentamiento	bar	25	25
Superi	ficie de intercambio circuito de calentamiento	m ²	2.7	3.3
Peso e	en vacío (aprox.)	Kg	195	230
kw/e:	Entrada agua fría / desagüe	"GAS/M	1-1/4	1-1/4
ww:	Salida A.C.S.	"GAS/M	1-1/2	1-1/2
z <i>:</i>	Recirculación	"GAS/M	1-1/2	1-1/2
kv:	Avance circuito primario	"GAS/H	1	1
kr:	Retorno circuito primario	"GAS/H	1	1
eh:	Conexión lateral	"GAS/H	1-1/2	1-1/2
m:	Conexión lateral	"GAS/H	1-1/2	1-1/2
	. 5,,		252	0.50
	A: Diámetro exterior	mm	950	950
	3: Longitud total	mm	1840	2250
Cota c	•	mm	100	240
Cota d		mm	365	505
Cota e		mm	560	710
Cota f:		mm	1280	1570
Cota g		mm	1020	1310
Cota h	1:	mm	1510	1900

ErP		CV-750-M1	CV-1000-M1
Pérdidas estáticas	W	89	115
Clase de eficiencia energética		В	С
Volumen	I.	750	1000

Depósitos de 800 y 1000 litros con un serpentín

lapesa

con boca lateral DN400, para producción y acumulación de A.C.S.

Descripción

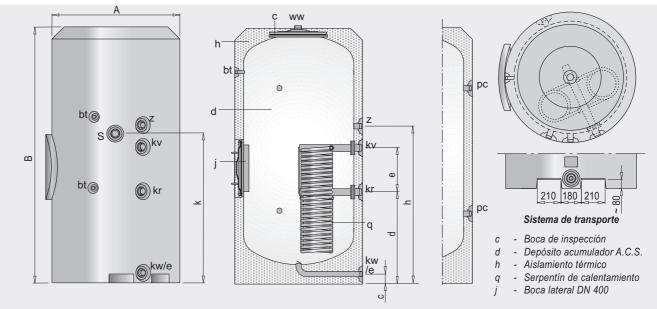
Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

Capacidades de **800** y **1000** litros, con un serpentín interno para producción de A.C.S. Incorporan de serie, panel de control modelo "TS" con termómetro, termostato de regulación de temperatura y piloto indicador de funcionamiento, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC, con sistema desmontable de los laterales, para permitir su paso por puertas de 800 mm. de anchura.

Acabado exterior con forro acolchado desmontable y tapas de color gris RAL 7035.

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


aracterísticas té cnicas /Conexiones	/Dimensiones	CV-800-M1B	CV-1000-M1B
apacidad de A.C.S.	litros	800	1000
emperatura máxima depósito de A.C.S.	°C	90	90
resión máxima depósito de A.C.S.	bar	8	8
emperatura máxima circuito de calentamient	o °C	200	200
resión máxima circuito de calentamiento	bar	25	25
uperficie de intercambio circuito de calentan	niento m²	2.7	3.3
eso en vacío (aprox.)	Kg	195	230
w/e: Entrada agua fría / desagüe	"GAS/M	1-1/4	1-1/4
w: Salida A.C.S.	"GAS/M	1-1/2	1-1/2
:: Recirculación	"GAS/M	1-1/2	1-1/2
v: Avance circuito primario	"GAS/H	1	1
r: Retorno circuito primario	"GAS/H	1	1
h: Conexión lateral	"GAS/H	1-1/2	1-1/2
ota A: Diámetro exterior	mm	950	950
ota B: Longitud total	mm	1840	2250
ota c:	mm	100	140
ota d:	mm	465	505
ota e:	mm	560	710
ota f:	mm	1330	1570
ota g:	mm	1090	1310
ota h:	mm	1560	1900

ErP		CV-800-M1B	CV-1000-M1B
Pérdidas estáticas	W	97	125
Clase de eficiencia energética		В	С
Volumen	1.	800	1000

Depósitos de 1500 litros con un serpentín

lapesa

con boca lateral DN400, para producción y acumulación de A.C.S.

Descripción

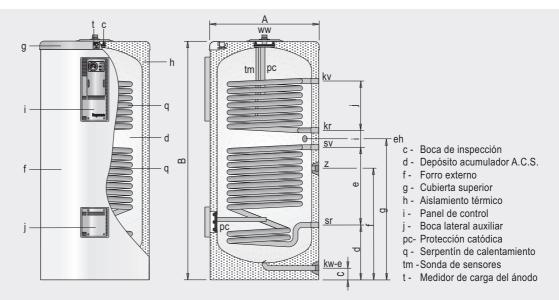
Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

Capacidad de 1500 litros, con conjunto de serpentines interno para producción de A.C.S.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Disponen de conexión lateral para la incorporación de resistencia eléctrica de calentamiento, como sistema de apoyo.

Suministro


Kit de protección catódica por ánodos de magnesio para montar en la instalación del depósito.

Características té cnicas /Conexiones /	Dimensiones	CV-1500-M1B
Capacidad de A.C.S.	litros	1500
Temperatura máxima depósito de A.C.S.	°C	90
Presión máxima depósito de A.C.S.	bar	8
Temperatura máxima circuito de calentamiento	°C	200
Presión máxima circuito de calentamiento	bar	25
Superficie de intercambio circuito de calentamie	ento m ²	3.4
Peso en vacío (aprox.)	Kg	415
e: Desagüe	"GAS/M	1-1/2
kw: Entrada agua fría	"GAS/M	1-1/2
ww: Salida A.C.S.	"GAS/M	2
z: Recirculación	"GAS/M	1-1/2
bt: Conexión sensores	"GAS/M	3/4
kv: Avance circuito primario	"GAS/M	2
kr: Retorno circuito primario	"GAS/M	2
S: Conexión lateral	"GAS/M	2
pc: Conexión ánodo	"GAS/M	1-1/2
Cota A:Diámetro exterior	mm	1160
Cota B: Longitud total	mm	2320
Cota c:	mm	150
Cota d:	mm	740
Cota e:	mm	400
Cota h:	mm	1490
Cota k::	mm	1370

ErP		CV-1500-M1B
Pérdidas estáticas	W	169
Clase de eficiencia energética		С
Volumen	I.	1500

lapesa

para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

Capacidades de 300 a 500 litros, con dos serpentines internos para producción de A.C.S.

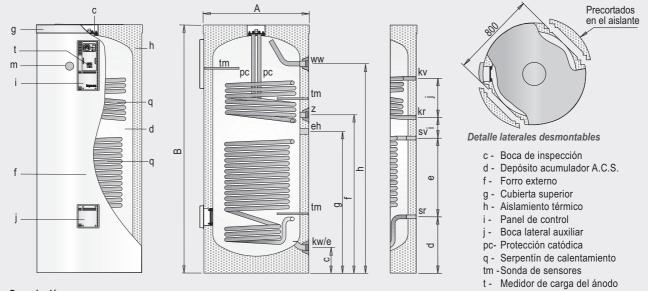
Incorporan de serie panel de control modelo "TS" con termómetro, termostato de regulación de temperatura y piloto indicador de funcionamiento, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas de color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Características técnicas /Conexiones/Din	nensiones	CV-300-M2	CV-400-M2	CV-500-M2
Capacidad de A.C.S.	litros	300	400	500
emperatura máxima depósito de A.C.S.	°C	90	90	90
Presión máxima depósito de A.C.S.	bar	8	8	8
emperatura máxima circuito de calentamiento	°C	200	200	200
Presión máxima circuito de calentamiento	bar	25	25	25
Superficie de intercambio circuito de calentamiento su	perior m ²	0.7	0.7	1.2
Superficie de intercambio circuito de calentamiento inf	erior m ²	1.8	1.5	2.0
Peso en vacío (aprox.)	Kg	120	150	175
w/e: Entrada agua fría / desagüe	"GAS/M	1	1	1
vw: Salida A.C.S.	"GAS/M	1	1	1
: Recirculación	"GAS/M	1	1	1
v: Avance circuito primario inferior	"GAS/H	1	1	1
r: Retorno circuito primario inferior	"GAS/H	1	1	1
v: Avance circuito primario superior	"GAS/H	1	1	1
r: Retorno circuito primario superior	"GAS/H	1	1	1
h: Conexión lateral	"GAS/M	2	2	2
Cota A: Diámetro exterior	mm	620	770	770
Cota B: Longitud total	mm	1685	1475	1690
Cota c:	mm	85	85	85
Cota d:	mm	350	390	390
Cota e:	mm	710	450	550
Cota f:	mm	910	690	790
Cota g:	mm	1120	900	1000
Cota i:	mm	120	120	120
Cota j:	mm	250	250	350

ErP		CV-300-M2	CV-400-M2	CV-500-M2
Pérdidas estáticas	W	67	88	93
Clase de eficiencia energética		В	С	С
Volumen	I.	292	398	490

Depósitos de 750 y 1000 litros con dos serpentines

lapesa

para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

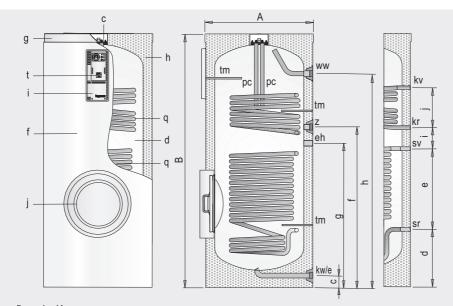
Capacidades de 750 y 1000 litros, con dos serpentines internos para producción de A.C.S.

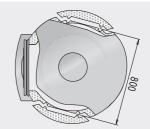
Incorporan de serie panel de control modelo "TS" con termómetro, termostato de regulación de temperatura y piloto indicador de funcionamiento, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC, con sistema desmontable de los laterales, para permitir su paso por puertas de 800 mm. de anchura.

Acabado exterior con forro acolchado desmontable y tapas de color gris RAL 7035.

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Características técnicas /Conexiones	/Dimensiones	CV-750-M2	CV-1000-M2
Capacidad de A.C.S.	litros	750	1000
Temperatura máxima depósito de A.C.S.	°C	90	90
Presión máxima depósito de A.C.S.	bar	8	8
Temperatura máxima circuito de calentamiento	°C	200	200
Presión máxima circuito de calentamiento	bar	25	25
Superficie de intercambio circuito de calentamien	to superior m ²	1.3	1.3
Superficie de intercambio circuito de calentamien	to inferior m ²	2.7	3.3
Peso en vacío (aprox.)	Kg	213	249
w/e: Entrada agua fría / desagüe	"GAS/M	1-1/4	1-1/4
vw: Salida A.C.S.	"GAS/M	1-1/2	1-1/2
::: Recirculación	"GAS/M	1-1/2	1-1/2
v: Avance circuito primario inferior	"GAS/H	1	1
r: Retorno circuito primario inferior	"GAS/H	1	1
v: Avance circuito primario superior	"GAS/H	1	1
r: Retorno circuito primario superior	"GAS/H	1	1
eh: Conexión lateral	"GAS/H	1-1/2	1-1/2
n: Conexión lateral	"GAS/H	1-1/2	1-1/2
Cota A: Diámetro exterior	mm	950	950
Cota B: Longitud total	mm	1840	2250
Cota c:	mm	100	240
Cota d:	mm	365	505
Cota e:	mm	560	710
Cota f:	mm	1171	1462
Cota g:	mm	1021	1312
Cota h:	mm	1510	1900
Cota i:	mm	190	190
Cota j:	mm	350	350


ErP		CV-750-M2	CV-1000-M2
Pérdidas estáticas	W	89	115
Clase de eficiencia energética		В	С
Volumen	I.	750	1000

Depósitos de 800 y 1000 litros con dos serpentines

lapesa

con boca lateral DN400, para producción y acumulación de A.C.S.

Detalle laterales desmontables

- c Boca de inspección
- d Depósito acumulador A.C.S.
- f Forro externo
- g Cubierta superior
- h Aislamiento térmico
- i Panel de control
- j Boca lateral DN400
- pc- Protección catódica
- q Serpentín de calentamiento
- tm -Sonda de sensores
- t Medidor de carga del ánodo

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

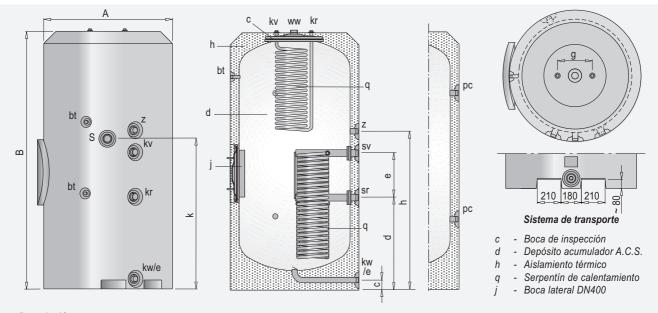
Capacidades de 800 y 1000 litros, con dos serpentines internos para producción de A.C.S.

Incorporan de serie panel de control modelo "TS" con termómetro, termostato de regulación de temperatura y piloto indicador de funcionamiento, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC, con sistema desmontable de los laterales, para permitir su paso por puertas de 800 mm. de anchura.

Acabado exterior con forro acolchado desmontable y tapas de color gris RAL 7035.

Suministro


El depósito se suministra completamente acabado, probado y con todos los componentes montados.

Características té cnicas /Conexiones	/Dimensiones	CV-800-M2B	CV-1000-M2B
Capacidad de A.C.S.	litros	800	1000
Temperatura máxima depósito de A.C.S.	°C	90	90
Presión máxima depósito de A.C.S.	bar	8	8
Temperatura máxima circuito de calentamient	o °C	200	200
Presión máxima circuito de calentamiento	bar	25	25
Superficie de intercambio circuito de calentamie		1.3	1.3
Superficie de intercambio circuito de calentamie	nto inferior m ²	2.7	3.3
Peso en vacío (aprox.)	Kg	213	249
kw/e: Entrada agua fría / desagüe	"GAS/M	1-1/4	1-1/4
ww: Salida A.C.S.	"GAS/M	1-1/2	1-1/2
z:: Recirculación	"GAS/M	1-1/2	1-1/2
sv: Avance circuito primario inferior	"GAS/H	1	1
sr: Retorno circuito primario inferior	"GAS/H	1	1
kv: Avance circuito primario superior	"GAS/H	1	1
kr: Retorno circuito primario superior	"GAS/H	1	1
eh: Conexión lateral	"GAS/H	1-1/2	1-1/2
Cota A: Diámetro exterior	mm	950	950
Cota B: Longitud total	mm	1890	2250
Cota c:	mm	100	140
Cota d:	mm	465	505
Cota e:	mm	560	710
Cota f:	mm	1225	1462
Cota g:	mm	1090	1312
Cota h:	mm	1560	1900
Cota i:	mm	130	190
Cota j:	mm	350	350

ErP		CV-800-M2B	CV-1000-M2B
Pérdidas estáticas	W	97	125
Clase de eficiencia energética		В	С
Volumen	I.	800	1000

con boca lateral DN400, para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

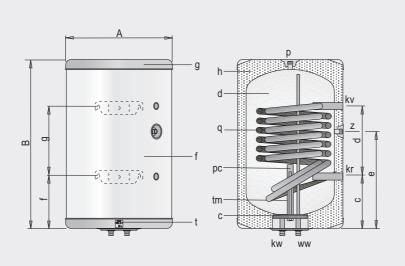
Capacidad de 1500 litros, con dos serpentines internos para producción de A.C.S.

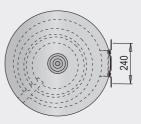
Disponen de conexión lateral para la incorporación de resistencia eléctrica de calentamiento, como sistema de apoyo.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Suministro

Kit de protección catódica por ánodos de magnesio para montar en la instalación del depósito.


Características té cnicas /Conexiones /Din	iensiones	CV-1500-M2B
Capacidad de A.C.S.	litros	1500
Temperatura máxima depósito de A.C.S.	°C	90
Presión máxima depósito de A.C.S.	bar	8
Temperatura máxima circuito de calentamiento	°C	200
Presión máxima circuito de calentamiento	bar	25
Superficie de intercambio circuito de calentamiento i		3,4
Superficie de intercambio circuito de calentamiento s	uperior m ²	1,3
Peso en vacío (aprox.)	Kg	430
e: Desagüe	"GAS/M	1-1/2
kw: Entrada agua fría	"GAS/M	1-1/2
ww: Salida A.C.S.	"GAS/M	2
z: Recirculación	"GAS/M	1-1/2
bt: Conexión sensores	"GAS/M	3/4
sv/sr: Avance/retorno circuito primario inferior	"GAS/M	2
kv/kr: Avance/Retorno circuito primario superior	"GAS/H	1/2
S: Conexión lateral	"GAS/M	2
oc: Conexión ánodo	"GAS/M	1-1/2
Cota A: Diámetro exterior	mm	1160
Cota B: Longitud total	mm	2320
Cota c:	mm	150
Cota d:	mm	740
Cota e:	mm	400
Cota g:	mm	315
Cota h:	mm	1490
Cota k:	mm	1370


ErP		CV-1500-M2B
Pérdidas estáticas	W	169
Clase de eficiencia energética		С
Volumen	I.	1500

Depósitos de 160 litros con serpentín de alto rendimiento

para producción y acumulación de A.C.S. instalación mural

- Boca inferior
- d- Depósito A.C.S.
- f- Forro externo
- g- Cubierta
- h- Aislamiento térmico
- q- Doble serpentín intercambiador
- t- Medidor de carga del ánodo
- tm- Sonda de sensores
- pc- Protección catódica

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación exclusivamente mural con las conexiones en la parte inferior. Fabricado en acero vitrificado, s/DIN 4753.

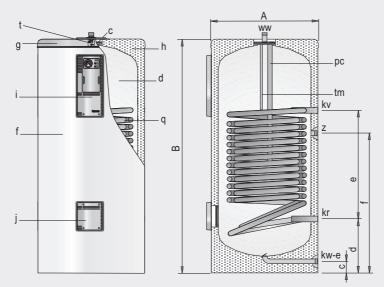
Capacidad de **160** litros, con un serpentín interno de alto rendimiento, dimensionado especialmente para sistemas de baja temperatura (p.e. bomba de calor).

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas de color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Características técnicas /Conexiones/D	mensiones	CV-160-HL/M
Capacidad de A.C.S.	litros	160
Temperatura máxima depósito de A.C.S.	°C	90
Presión máxima depósito de A.C.S.	bar	8
Temperatura máxima circuito de calentamiento	°C	200
Presión máxima circuito de calentamiento	bar	25
Superficie de intercambio circuito de calentamiento	m ²	1,7
Peso en vacío (aprox.)	Kg	90
kw:Entrada agua fría	"GAS/M	3/4
ww: Salida A.C.S.	"GAS/M	3/4
z: Recirculación	"GAS/M	3/4
kv: Avance serpentín	"GAS/H	1
kr: Retorno serpentín	"GAS/H	1
P: Conexión superior	"GAS/M	3/4
Cota A: Diámetro exterior	mm	620
Cota B: Longitud total	mm	994
Cota c:	mm	305
Cota d:	mm	415
Cota e:	mm	570
Cota f:	mm	315
Cota g:	mm	405

ErP		CV-160-HL/M
Pérdidas estáticas	W	49
Clase de eficiencia energética		В
Volumen	l.	160

Depósitos de 200 a 500 litros con serpentín de alto rendimiento

para producción y acumulación de A.C.S.

- c- Boca superior
- d- Depósito A.C.S.
- f- Forro externo
- g- Cubierta
- n- Aislamiento térmico
- i- Panel de control
- j- Boca lateral
- q- Doble serpentín intercambiador
- t- Medidor de carga del ánodo
- tm- Sonda de sensores
- pc- Protección catódica

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

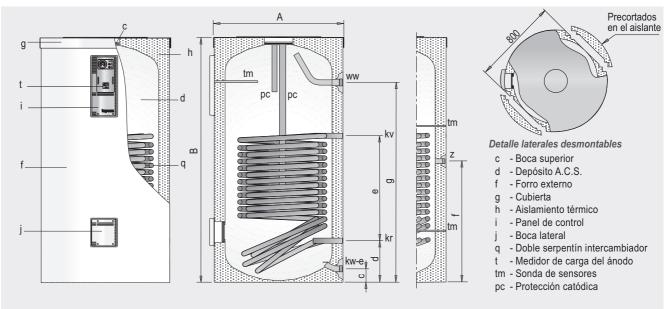
Capacidades de 200 a 500 litros, con un serpentín interno de alto rendimiento, dimensionado especialmente para sistemas de baja temperatura (p.e. bomba de calor).

Incorporan de serie, panel de control modelo "T" con termómetro, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito. Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas de color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Dimensiones / Conexiones		CV-200-HL	CV-300-HL	CV-400-HL	CV-500-HL
Capacidad de A.C.S.	litros	200	300	400	500
Temperatura máxima depósito de A.C.S.	°C	90	90	90	90
Presión máxima depósito de A.C.S.	bar	8	8	8	8
Temperatura máxima circuito de calentamiento	°C	200	200	200	200
Presión máxima circuito de calentamiento	bar	25	25	25	25
Superficie de intercambio circuito de calentamien	to m²	2.4	3.1	4.8	4.8
Peso en vacío (aprox.)	Kg	92	133	178	191
kw-e:Entrada agua fría / desagüe	"GAS/M	1	1	1	1
ww: Salida A.C.S.	"GAS/M	1	1	1	1
z: Recirculación.	"GAS/M	1	1	1	1
kv: Conexión serpentín	"GAS/H	1	1	1	1
kr: Conexión serpentín	"GAS/H	1	1	1	1
Cota A: Diámetro exterior	mm	620	620	770	770
Cota B: Longitud total	mm	1205	1685	1475	1690
Cota c:	mm	85	85	85	85
Cota d:	mm	350	350	390	390
Cota e:	mm	555	710	785	785
Cota f:	mm	755	910	1010	1010

ErP		CV-200-HL	CV-300-HL	CV-400-HL	CV-500-HL
Pérdidas estáticas	W	56	67	88	93
Clase de eficiencia energética		В	В	С	С
Volumen	I.	197	292	398	490

Depósitos de 750 y 1000 litros con serpentín de alto rendimiento

lapesa

para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

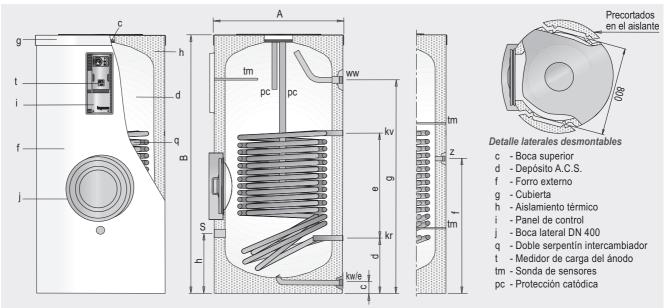
Capacidades de **750** y **1000** litros, con un serpentín interno de alto rendimiento, dimensionado especialmente para sistemas de baja temperatura (p.e. bomba de calor).

Incorporan de serie, panel de control modelo "T" con termómetro, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito. Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC, con sistema desmontable de los laterales, para permitir su paso por puertas de 800 mm. de anchura.

Acabado exterior con forro acolchado desmontable y tapas de color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Dimensiones / Conexiones		CV-750-HL	CV-1000-HL
Capacidad de A.C.S.	litros	750	1000
Temperatura máxima depósito de A.C.	S. °C	90	90
Presión máxima depósito de A.C.S.	bar	8	8
Temperatura máxima circuito de calent	amiento °C	200	200
Presión máxima circuito de calentamie	nto bar	25	25
Superficie de intercambio circuito de ca	alentamiento m²	5,7	6,1
Peso en vacío (aprox.)	Kg	245	282
kw-e:Entrada agua fría / desagüe	"GAS/M	1-1/4	1-1/4
ww: Salida A.C.S.	"GAS/M	1-1/2	1-1/2
z: Recirculación	"GAS/M	1-1/2	1-1/2
kv: Conexión serpentín	"GAS/H	1	1
kr: Conexión serpentín	"GAS/H	1	1
Cota A: Diámetro exterior	mm	950	950
Cota B: Longitud total	mm	1840	2250
Cota c:	mm	100	240
Cota d:	mm	308	450
Cota e:	mm	780	830
Cota f:	mm	933	1125
Cota g:	mm	1508	1900

ErP		CV-750-HL	CV-1000-HL
Pérdidas estáticas	W	89	115
Clase de eficiencia energética		В	С
Volumen	I.	750	1000

Depósitos de 800 y 1000 litros con serpentín de alto rendimiento

lapesa

para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

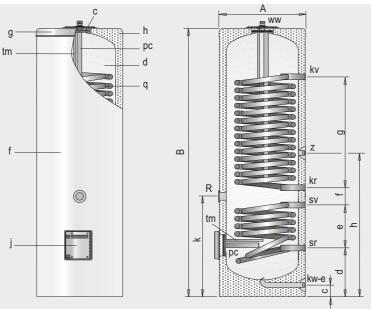
Capacidades de **800** y **1000** litros, con un serpentín interno de alto rendimiento, dimensionado especialmente para sistemas de baja temperatura (p.e. bomba de calor).

Incorporan de serie, panel de control modelo "T" con termómetro, y ánodo de magnesio con medidor de carga, para la protección catódica del depósito. Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC, con sistema desmontable de los laterales, para permitir su paso por puertas de 800 mm. de anchura.

Acabado exterior con forro acolchado desmontable y tapas de color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Dimensiones / Conexiones		CV-800-HLB	CV-1000-HLB
Capacidad de A.C.S.	litros	800	1000
Temperatura máxima depósito de A.C.S.	°C	90	90
Presión máxima depósito de A.C.S.	bar	8	8
Temperatura máxima circuito de calentar	niento °C	200	200
Presión máxima circuito de calentamiento	o bar	25	25
Superficie de intercambio circuito de cale	ntamiento m ²	5,7	6,1
Peso en vacío (aprox.)	Kg	292	335
kw-e:Entrada agua fría / desagüe	"GAS/M	1-1/4	1-1/4
ww: Salida A.C.S.	"GAS/M	1-1/2	1-1/2
z: Recirculación	"GAS/M	1-1/2	1-1/2
kv: Conexión serpentín	"GAS/H	1	1
kr: Conexión serpentín	"GAS/H	1	1
S: Conexión lateral	"GAS/H	1-1/2	1-1/2
Outs As Differential controllers		050	050
Cota A: Diámetro exterior	mm	950	950
Cota B: Longitud total	mm	1840	2250
Cota c:	mm	100	142
Cota d:	mm	408	450
Cota e:	mm	780	830
Cota f:	mm	1033	1125
Cota g:	mm	1508	1900
Cota h:	mm	448	490

ErP		CV-800-HLB	CV-1000-HLB
Pérdidas estáticas	W	97	125
Clase de eficiencia energética		В	С
Volumen	I.	800	1000

Depósito de 350 litros con dos serpentines de alto rendimiento

lapesa

para producción y acumulación de A.C.S.

- c Boca superior
- d Depósito A.C.S.
- f Forro externo
- g Cubierta
- h Aislamiento térmico
- j Boca lateral
- q Doble serpentín intercambiador
- tm Sonda de sensores
- pc Protección catódica

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual, instalación en serie o en paralelo. Fabricado en acero vitrificado, s/DIN 4753.

Capacidad de **350** litros, con dos serpentines internos de alto rendimiento, dimensionado especialmente para sistemas de baja temperatura (p.e. bomba de calor).

Incorporan de serie termómetro y ánodo de magnesio para la protección catódica del depósito.

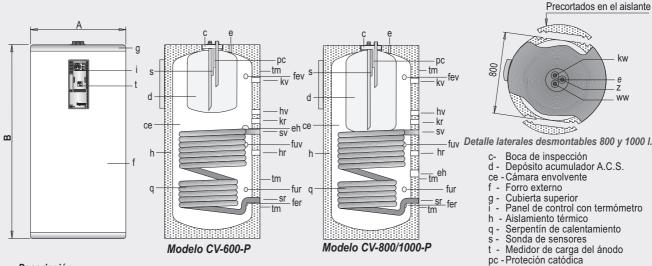
Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas de color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.

El conjunto va embalado y flejado a palet de madera no retornable.


Dimensiones / Conexiones		CV-350-HL/DUO
Capacidad de A.C.S.	litros	350
Temperatura máxima depósito de A.C.S.	°C	90
Presión máxima depósito de A.C.S.	bar	8
Temperatura máxima circuito de calentamiento	°C	200
Presión máxima circuito de calentamiento	bar	25
Superficie de intercambio circuito de calentamiento	inferior m ²	3,5
Superficie de intercambio circuito de calentamiento	superior m ²	1,3
Peso en vacío (aprox.)	Kg	166
kw-e:Entrada agua fría / desagüe	"GAS/M	1
ww: Salida A.C.S.	"GAS/M	1
z: Recirculación	"GAS/M	1
sv/sr: Avance/ Retorno serpentín inferior	"GAS/H	1
kv/kr: Avance/ Retorno serpentín superior	"GAS/H	1
R: conexión lateral	"GAS/H	1-1/2
Cota A: Diámetro exterior	mm	620
Cota B: Longitud total	mm	1935
Cota c:	mm	83
Cota d:	mm	350
Cota e:	mm	310
Cota f:	mm	125
Cota g:	mm	800
Cota h:	mm	1035
Cota k:	mm	723

ErP		CV-350-HL/DUO
Pérdidas estáticas	W	80
Clase de eficiencia energética		С
Volumen	I.	350

Depósitos multifunción con serpentín 600 a 1000 litros

lapesa

para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, denominados "MULTIFUNCIÓN" por su capacidad de instalar varias fuentes energéticas diferentes en un solo depósito. Fabricado en acero vitrificado, s/DIN 4753.

Capacidades de 600 a 1000 litros. La producción de A.C.S. se realiza por intercambio térmico entre los depósitos de circuito primario (externo) y el depósito de A.C.S. (interno) a través de sistintas fuentes energéticas acopladas al depósito de forma simultanea. Dispone de una gran capacidad de circuito primario, que actúa como acumulador de inercia térmica y donde se aloja un serpentín con gran superficie de intercambio térmico, concebido especialmente para instalación solar.

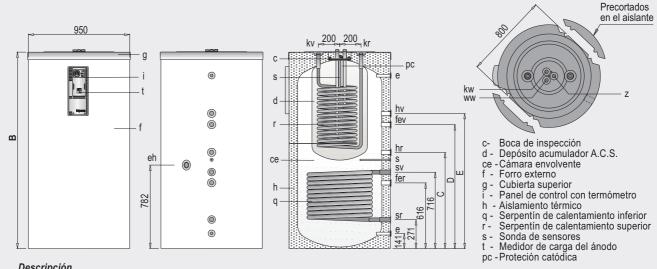
Incorporan de serie, panel de control modelo "T" con termómetro, y ánodo de magnesio, para la protección catódica del depósito.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas de color gris RAL 7035.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Características técnicas / Conexiones / Dimen	siones	CV-600-P	CV-800-P	CV-1000-P
Capacidad total	I.	600	800	1000
Capacidad ACS	I.	150	150	200
Capacidad depósito envolvente	I.	430	623	770
Temperatura máx depósito de ACS	°C	90	90	90
Presión máx depósito de ACS	MPa (bar)	0.8 (8)	0.8 (8)	0.8 (8)
Temperatura máx depósito envolvente	°C	110	110	110
Presión máx depósito envolvente	MPa (bar)	0.3 (3)	0.3 (3)	0.3 (3)
Temperatura máx serpentin c. primario	°C	200	200	200
Presión máx serpentín c. primario	MPa (bar)	2.5 (25)	2.5 (25)	2.5 (25)
Superficie de intercambio serpentín c. primario	m ²	2.4	2.7	2.7
Peso en vacío	Kg	170	260	290
kw:Entrada agua fría	"GAS/M	1	1	1
ww:Salida A.C.S.	"GAS/M	1	1	1
z: Recirculación	"GAS/M	1	1	1
eh: Conexión lateral	"GAS/H	2	2	2
kv /kr: Avance /Retorno circuito primario	"GAS/H	1-1/4	1-1/4	1-1/4
sv /sr: Avance /Retorno circuito primario	"GAS/H	1	1	1
nv /hr: Avance /Retorno calefacción	"GAS/H	1-1/4	1-1/4	1-1/4
fev /fer:Avance /Retorno caldera combustible sólido	"GAS/H	1-1/4	1-1/4	1-1/4
fuv /fur:Avance /Retorno suelo radiante	"GAS/H	1-1/4	1-1/4	1-1/4
m:Conexión sensores circuito primario	"GAS/H	1/2	1/2	1/2
e:Purgador	"GAS/H	1/2	1/2	1/2
Cota A: Diámetro exterior	mm	770	950	950
Cota B: Longitud total	mm	1730	1840	2250

ErP		CV-600-P	CV-800-P	CV-1000-P
Pérdidas estáticas	W	105	89	115
Clase de eficiencia energética		С	В	С
Volumen	I.	580	773	970

Depósitos multifunción con serpentín 800 y 1000 litros

lapesa

para producción y acumulación de A.C.S.

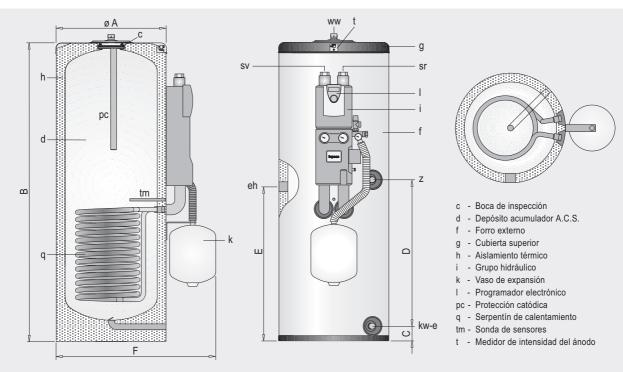
Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, denominados "MULTIFUNCIÓN" por su capacidad de instalar varias fuentes energéticas diferentes en un solo depósito. Fabricado en acero vitrificado, s/DIN 4753.

Capacidades de 800 y 1000 litros. La producción de A.C.S. se realiza por intercambio térmico entre los depósitos de circuito primario (externo) y el depósito de A.C.S. (interno) a través de distintas fuentes energéticas acopladas al depósito de forma simultanea. Incorpora un serpentín en el depósito de A.C.S. para calentamiento mediante una fuente energética auxiliar. Dispone de una gran capacidad de circuito primario, que actúa como acumulador de inercia térmica y donde se aloja un serpentín con gran superficie de intercambio térmico, concebido especialmente para instalación solar. Incorporan de serie, panel de control modelo "T" con termómetro, y ánodo de magnesio, para la protección catódica del depósito.

Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC.

Acabado exterior con forro acolchado desmontable, color blanco RAL 9016 y tapas de color gris RAL 7035.

El depósito se suministra completamente acabado, probado y con todos los componentes montados.


Características técnicas / Conexiones / Dimer	siones	CV-800-P/DUO	CV-1000-P/DUO
Capacidad total	l.	800	1000
Capacidad ACS	I.	176	228
Capacidad depósito envolvente	I.	589	763
Temperatura máx depósito de ACS	°C	90	90
Presión máx depósito de ACS	MPa (bar)	0,8 (8)	0,8 (8)
Temperatura máx depósito envolvente	°C	110	110
Presión máx depósito envolvente	MPa (bar)	0,3 (3)	0,3 (3)
Temperatura máx serpentines	°C	200	200
Presión máx serpentínes	MPa (bar)	2.5 (25)	2,5 (25)
Superficie de intercambio serpentín inferior	m^2	2,4	2,4
Superficie de intercambio serpentín superior	m ²	1,3	1,3
Peso en vacío	Kg	270	300
kw:Entrada agua fría	"GAS/M	1	1
ww:Salida A.C.S.	"GAS/M	1	1
z: Recirculación	"GAS/M	1	1
e: Vaciado	"GAS/H	1/2	1/2
eh: Conexión lateral	"GAS/H	1-1/2	1-1/2
kv /kr: Avance /Retorno circuito primario	"GAS/M	1	1
sv /sr: Avance /Retorno circuito primario	"GAS/H	1	1
hv /hr: Avance /Retorno calefacción	"GAS/H	1	1
fev /fer:Avance /Retorno caldera combustible sólido	"GAS/H	1	1
e:Purgador	"GAS/H	1/2	1/2
Cota B: Longitud total	mm	1840	2250
Cota C:	mm	901	1091
Cota D:	mm	1161	1491
Cota E:	mm	1266	1596

ErP		CV-800-P/DUO	CV-1000-P/DUO
Pérdidas estáticas	W	89	115
Clase de eficiencia energética		В	С
Volumen	I.	773	970

Depósitos para instalaciones por energía solar

lapesa

para producción y acumulación de A.C.S.

Descripción

Depósitos para producción y acumulación de A.C.S., en instalación vertical sobre suelo, como depósito individual. Fabricado en acero vitrificado, s/DIN 4753.

Capacidades de **150** a **750** litros, con un serpentín interno, dimensionado para su conexión hidraúlica a un conjunto de colectores solares. Incorporan de serie una central hidraúlica solar completa con centralita electrónica de regulación y control, grupo hidraúlico y vaso de expansión integrados. Este sistema de circulación forzada permite disponer de A.C.S. de manera rápida y fiable, ubicando el depósito en el interior de la vivienda y permitiendo el control del mismo mediante las distintas configuraciones de la centralita solar incorporada.

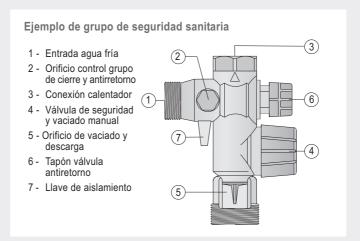
Aislado térmicamente con espuma rígida de poliuretano inyectado en molde, libre de CFC. Acabado exterior con forro acolchado desmontable, color gris RAL 7042 y tapas de color negro.

Suministro

El depósito se suministra completamente acabado, probado y con todos los componentes montados.

Características técnicas / Conexiones / Dimensiones		CV-150-GS	CV-200-GS	CV-300-GS	CV-500-GS
Capacidad de A.C.S.	1	150	200	300	500
Temperatura máxima depósito de A.C.S	°C	90	90	90	90
Presión máxima depósito de A.C.S.	bar	8	8	8	8
Temperatura máx. circuito de calentamiento	°C	150	150	150	150
Presión máx. circuito de calentamiento	bar	6	6	6	6
Sup. intercambio circuito calentamiento	m ²	0.5	0.8	1.1	1.5
Peso en vacío	Kg	70	97	122	162
xw-e: Entrada agua fría-desagüe	"GAS/M	3/4	3/4	1	1
vw: Salida A.C.S.	"GAS/M	3/4	3/4	1	1
z: Recirculación	"GAS/M	-	-	-	1
sv: Entrada de panel solar	"GAS/M	3/4	3/4	3/4	3/4
sr: Salida a panel solar	"GAS/M	3/4	3/4	3/4	3/4
eh: Conexión lateral	"GAS/H	1-1/2	1-1/2	1-1/2	1-1/2
Cota A: Diámetro exterior	mm	560	560	620	770
Cota B: Longitud total	mm	1265	1585	1685	1690
Cota C:	mm	120	120	83	83
Cota D:	mm	-	-	-	707
Cota E:	mm	630	790	870	830
Cota F:	mm	850	850	910	1060

ErP		CV-150-GS	CV-200-GS	CV-300-GS	CV-500-GS
Pérdidas estáticas	W	44	56	67	93
Clase de eficiencia energética		В	В	В	С
Volumen	I.	149	197	292	490


Instalación hidráulica

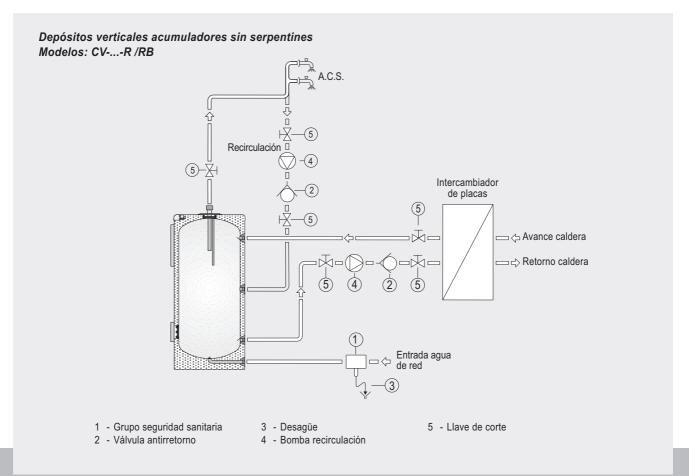
Normas de instalación Grupo de seguridad sanitaria	28
 Instalación con intercambiador de placas Modelos de simple pared 	29
Instalación para energía solar distribuida	0/
Modelos con un serpentín	29
Instalación con caldera	
Modelos con un serpentín	30
Instalación combinada	
Modelos con dos serpentines	30
Instalación combinada	
Modelos con dos serpentines alto rendimiento	31
Instalación combinada	
Modelos multifunción	31
Normas de instalación específicas SOLVITRO	
Instalación con panel solar. Modelos SOLVITRO (GS) _	32

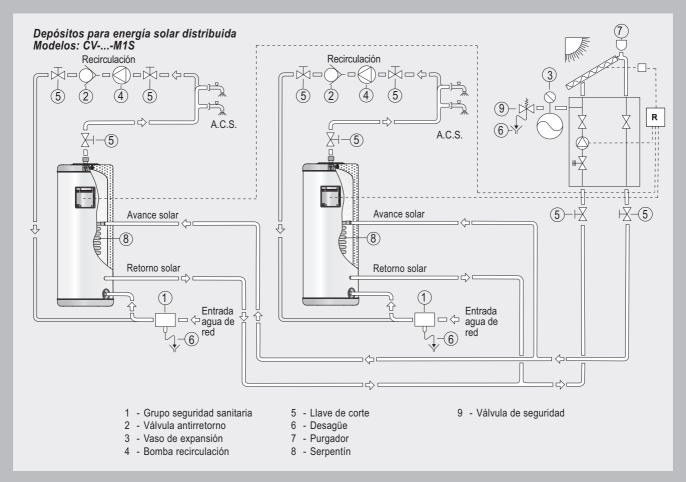
Normas generales

- El sistema de seguridad se añadirá en la instalación de agua sanitaria.
- Un dispositivo limitador de presión debe ser colocado en la instalación de A.C.S. La presión nominal de reglaje del grupo de seguridad será < 0.8 MPa (8 bar).
- Cuando la presión en la red sea superior a 0.5 MPa (5 bar), se recomienda instalar un reductor de presión que impida que se supere en mas de 0.1 MPa (1 bar) la presión asignada.
- Se recomienda el funcionamiento de los grupos de presión de la instalación con control mediante variador de frecuencia, con objeto de reducir la probabilidad de existencia de variaciones bruscas de presión en la instalación.
- En caso de circuito primario de serpentines (o circuito de calentamiento) este irá provisto de válvula de seguridad.
- La válvula de seguridad debe estar conectada directamente al depósito sin ningún tipo de dispositivo, en particular, sin válvulas de corte ni antirretornos entre la válvula y el depósito.
- Están prohibidas las válvulas de seguridad regulables de tornillo en la instalación.
- Es normal observar una descarga de agua durante el calentamiento (expansión), cuyo volumen puede alcanzar un 3% de la capacidad del acumulador.
- Se debe hacer funcionar regularmente, en función de la calidad de las aguas, el dispositivo regulador de presión con el fin de quitar los depósitos de cal y verificar que no esta bloqueado.
- El agua puede gotear por el tubo de descarga del dispositivo limitador de presión. Este tubo debe mantenerse abierto a la atmósfera en un ambiente libre de heladas y en pendiente continua hacia abajo.
- El grupo de seguridad no debe situarse encima del depósito.
- Colocar manguitos dieléctricos en las tuberías de entrada y salida del agua sanitaria y en las conexiones del depósito.
- Purgar de aire los circuitos una vez se hayan llenado de agua.
- Vaciado del deposito: Cerrar la llave de aislamiento del grupo de seguridad y accionar la maneta de vaciado. Es aconsejable abrir una de las llaves de la canalización de agua caliente para obtener un mejor vaciado, permitiendo la entrada de aire en la parte superior del acumulador.
- Es obligaroria la instalación de contador de agua en los circuitos cerrados primarios de calentamiento para comprobar que no se producen renovaciones por encima de los valores permitidos por norma.
- Será obligatorio el montaje de vasos de expansión en el circuito secundario de ACS, así como en los circuitos primarios de calentamiento que lleven resistencias eléctricas. Los vasos de expansión serán calculados de acuerdo a la normativa vigente en cada momento.
- En los depósitos con boca de hombre lateral DN400, se deberán reapretar los tornillos de la boca con un par de apriete de 40 Nm.
- Es obligatorio el montaje de juntas nuevas de repuesto en las tapas (repuesto original suministrad a través del SAT oficial de Lapesa), cada vez que se abra el depósito para realizar operaciones de mantenimiento.
- Las tapas se deben cerrar roscando en cruz los tornillos/tuercas para asegurar un apriete uniforme.
- No emplear llave de impacto para el reaprete de la boca, ya que puede deteriorar la zona vitrificada.
- Se evitarán golpes de ariete en la instalación producidos habitualmente por elementos hidráulicos de apertura todo-nada (electroválvulas de paso en sistemas de calentamiento por vapor, grupos de presión, etc)
- Si el depósito se somete a presiones superiores a su presión máxima de trabajo, el recubrimiento de vitrificado puede agrietarse en algunas zonas.
- No quitar del depósito los embellecedores indicativos de entrada de agua fría (azul) y salida de agua caliente (rojo).

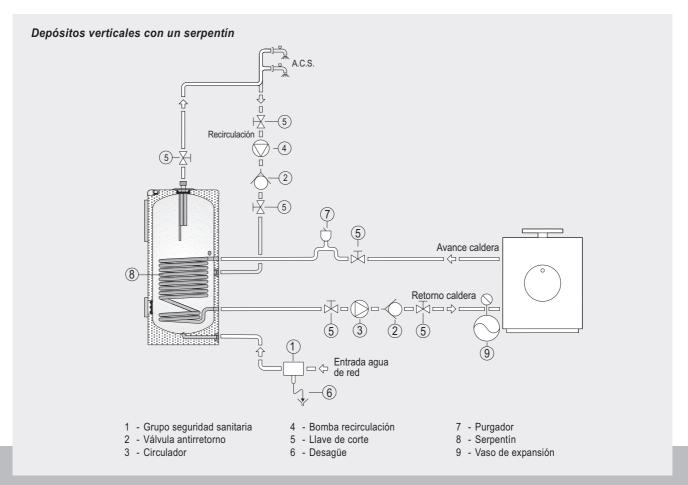
IMPORTANTE (Modelos con doble pared)

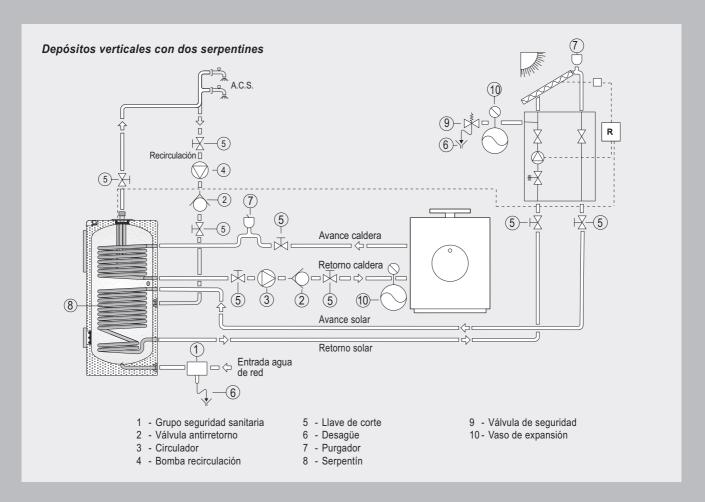
El circuito primario (o circuito de calentamiento) irá provisto de válvula de seguridad, tarada como máximo a 0.3 MPa (3 bar).

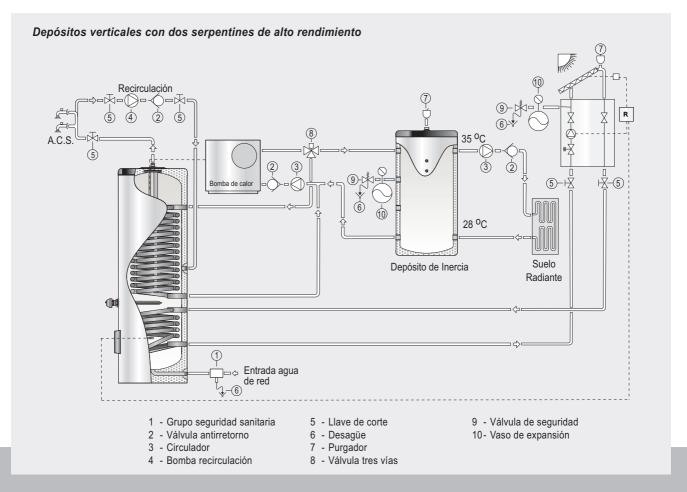

Una vez conexionadas las tuberías, llenar primero el depósito de agua sanitaria (circuito secundario) y someter a presión.

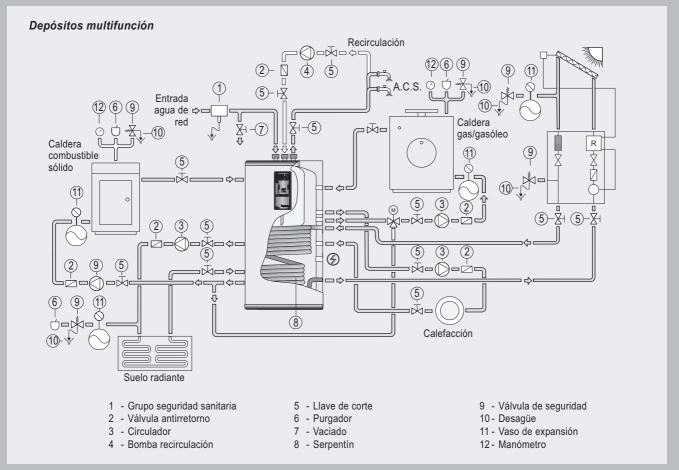

Seguidamente, llenar el circuito primario. Si se precisara vaciar, se procederá en el orden contrario.

El llenado y vaciado sólo podrá realizarlo un técnico instalador cualificado.


Ejemplos de instalación




Ejemplos de instalación



Ejemplos de instalación

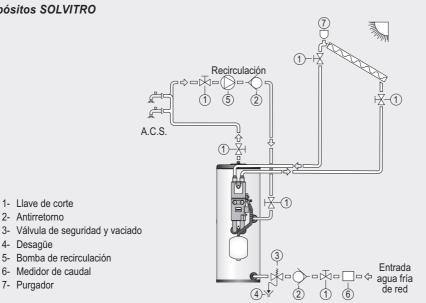
Normas específicas para SOLVITRO

- Se seguirán las normas de instalación de los captadores solares como parte integrante del sistema solar.
- El modo de llenado de la instalación solar se indica en el manual del grupo de impulsión suministrado con el depósito.
- Realizar las actividades de vigilancia y mantenimiento de la instalación según indica la normativa vigente.
- El usuario/instalador debe asegurarse de que el circuito esté perfectamente lleno y purgado de aire.
- El vaso de expansión se suministra con una precarga de 2,5 bar, pero es necesario aumentar esta carga (mediante la válvula situada en su parte inferior) a la presión de trabajo del circuito primario para que este actúe correctamente. Esta presión dependerá de la carga final del circuito primario, y debería estar entorno a los 3 ó 4 bar. La presión máxima del circuito primario está limitada por la válvula de seguridad a 6 bar.
- Por ejemplo, a un caudal de unos 2 l/min (0.12 m³/h), los depósitos CV-GS tienen una pérdida de carga inferior a 5 mbar (0.05 mca), por tanto la instalación del circuito primario permite una pérdida de carga de hasta 0.3 bar (3 mca) adicionales para la máxima velocidad de la bomba. (Esto dependerá de la pérdida de carga del resto de la instalación)
- Con objeto de evitar pérdidas térmicas, la longitud de las tuberías del sistema deberá ser tan corta como sea posible, y evitar al máximo los codos y pérdidas de carga en general. Los tramos horizontales tendrán siempre una pendiente mínima del 1% en el sentido de la circulación. Para los caudales indicados en el CTE (entre 1.44 y 2.4 l/min por cada captador de 2 m²), se recomienda una tubería de diámetro interno mínimo de 8 mm para evitar pérdidas de carga y ruidos en la circulación del fluido. A modo indicativo, a continuación se indica el volumen de fluido por metro de tubería y la pérdida de carga en codos en función del diámetro de la tubería a un caudal de 2 l/min:

Diámetro interno tubería mm	Capacidad tubería	Velocidad fluido m/s	Pérdida de carga codo 90° mbar	Pérdida de carga codo 45° mbar
8	0,05	0,66	2,241	0,897
10	0,08	0,42	0,918	0,367
12	0,11	0,29	0,443	0,177
14	0,15	0,22	0,239	0,096
16	0.20	0.17	0.140	0.056

- Se evitará que los tubos de la instalación formen sifones, especialmente en el exterior de la edificación.
- La altura máxima total de la instalación será de 20 m, medidos entre el grupo hidráulico del depósito y el punto más alto de la instalación, y condicionado a una presión interior de, al menos 4 bar.
- Aunque el grupo hidráulico del depósito incorpora un desaireador, es necesaria una correcta purga de aire del circuito primario, por lo deberá instalarse un purgador en la parte más alta de la instalación.
- Con respecto al fluido caloportador, Lapesa recomienda su "Blue-Sun", basado en propilenglicol. No es recomendable utilizar mezclas superiores al 30%, debido al aumento de la viscosidad del fluido. A continuación se muestra la reducción de la temperatura de congelación de la mezcla en función del % de propilenglicol:

% mezcla Blue-Sun en agua	Temperatura de congelación mezcla °C
0	0
10	-4
15	-5
20	-7
25	-10
30	-13


Depósitos SOLVITRO

1- Llave de corte 2- Antirretorno

5- Bomba de recirculación 6- Medidor de caudal

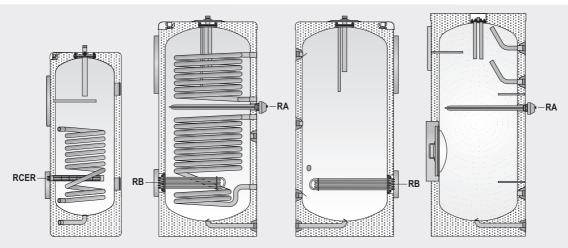
4- Desagüe

7- Purgador

Calentamiento eléctrico

•	Resistencias electricas de calentamiento	34
•	Conexionado electrico	35
•	Panel de control Esquemas electricos	36

PRODUCTO CERTIFICADO


Todos nuestros modelos son conformes a la Directiva Europea 2014/68/UE sobre equipos a presión (art. 3.3). Asimismo, aquellos modelos con posibilidad de calentamiento eléctrico, han sido diseñados y construidos según la norma europea EN 60335, sobre seguridad en aparatos eléctricos y análogos, y de acuerdo con la Directiva Europea de baja tensión 2006/95/CE.

A su vez, el marcado CE significa que el producto cumple con todas las Directivas Europeas que le afectan, como por ejemplo la Directiva Europea de Compatibilidad Electromagnética 2004/108/CE.

Todo ello supone que nuestros productos vayan marcados con el distintivo CE, que los hace aptos para ser comercializados en cualquier país de la UE con todas las garantías de seguridad.

Resistencias eléctricas de calentamiento

Los acumuladores CORAL VITRO para acumulación y producción de agua caliente sanitaria, pueden ir equipados con resistencias eléctricas, ya sea para producción de A.C.S. o como calentamiento de apoyo de otro sistema.

Para la instalación de la resistencia eléctrica, es necesaria la sustitución del panel suministrado, si lo hubiera, por un panel de control del tipo "TD" o "TPA".

La resistencia eléctrica se suministra en embalaje aparte (ver tabla de potencias disponibles y posibilidades de aplicación).

La conexión directa con el panel de control tipo "TD" es válida para resistencias de hasta 2,5 KW. Para potencias mayores, el control sobre la resistencia se efectuará mediante un contactor externo, s/ UNE-EN 60947.

La conexión con el panel de control tipo "TPA" se realizará mediante un contactor externo, s/UNE-EN 60947, independientemente de la potencia instalada.

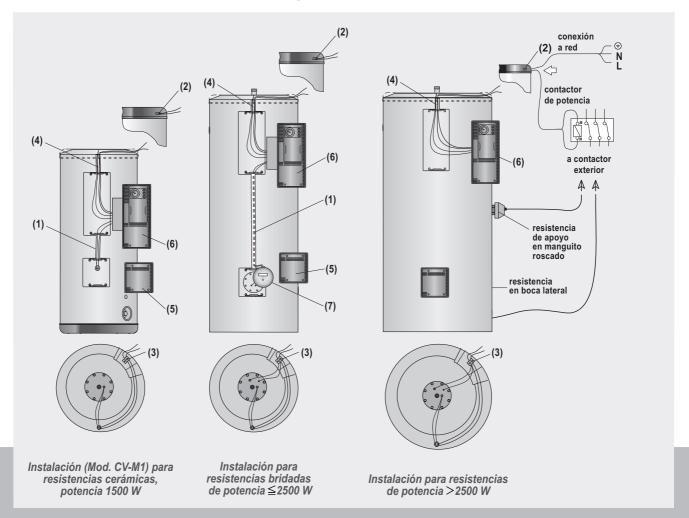
Resistencias bridadas de inmersión en boca lateral para calentamiento eléctrico principal:

Modelo	Potencia (W)	Tensión (V)	Longitud (mm.)	Instalación
RB-25	2500	\sim 230/ 3 \sim 400	310	Brida boca lateral
RB-50	5000	\sim 230/ 3 \sim 400	310	Brida boca lateral
RB-75	7500	\sim 230/ 3 \sim 400	440	Brida boca lateral
RB-100	10000	\sim 230/ 3 \sim 400	580	Brida boca lateral

Resistencias cerámicas enfundadas, para instalación en alojamiento que incorpora el depósito para este fin.

Modelo	Potencia (W)	Tensión (V)	Longitud (mm.)	Instalación
RCER-15	1500	\sim 230	311	enfundada

Resistencias roscadas de inmersión, para calentamiento eléctrico de apoyo.


Modelo	Potencia(W)	Potencia(W) Tensión (V)		Instalación	
RA3/2-25	2500	\sim 230	540	1-1/2"M	
RA3/2-50	5000	\sim 230/ 3 \sim 400	690	1-1/2"M	
RA4/2-60	6000	\sim 230/ 3 \sim 400	797	2"M	

OPCIONES DE INSTALACION

Modelos	RA3/2-25	RA3/2-50	RA4/2-60	RB-25	RB-50	RB-75	RB-100	RCER-15
CV110/ 150M1								Χ
CV200M1				X	X			
CV300M1	X			X	X			
CV500M1	X	X		X	X			
CV750 /1000M1	X	X			X	X		
CV800/ 1000M1B	X	X						
CV1500M1B	X	X	X					
CV300M2	X							
CV400/ 500M2	X	X						
CV750/ 1000M2	X	X			X	X		
CV800/ 1000M2B	X	X						
CV1500M2B	X	X	X					
CV200/ 300R				X	X	X		
CV500R				X	X	X	X	
CV750/ 1000R	X	X			X	X	X	
CV800/ 1000RB	X	X						
CV1500RB	X	X	X(x 3)					
CV80300M1S								X
CV160HL/M								X
CV200500HL				X	X			
CV750/ 1000HL					X	X		
CV800/1000HLB	X							
CV350HL/DUO	X							

Cableado resistencia eléctrica - panel de control - red

Para la conexión eléctrica de cada tipo de resistencia, consultar las instrucciones de montaje incluidas en los kit de resistencias eléctricas.

Para resistencias bridadas de ≤ 2,5 kW, los cables de conexión eléctrica pasan guiados por el interior del aislamiento. Existe un tubo (1) para la conducción de los cables que conexiona la resistencia eléctrica con el panel de control (6). Los cables que van desde el exterior hasta el panel de control se conducen a través de la abertura de la cubierta de plástico (2), se sujetan con la mordaza (3) y se conexionan al panel a través del conducto (4).

En todas las resistencias bridadas se colocará la carcasa metálica protectora (7) en la brida de la resistencia, sujeta por un espárrago y tornillo M6. Para resistencias >2,5 kW, la conexión de la resistencia al contactor saldrá directamente de la boca lateral, a través de un prensaestopas

Atención a la sección mínima de los cables.

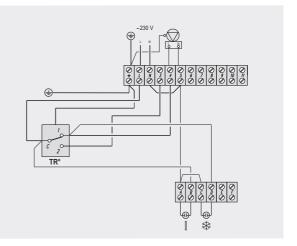

Tanto el panel de control (6) como el panel (5) que cubre la resistencia eléctrica, van sujetos al depósito por cuatro tornillos. La cubierta superior del depósito va encajada.

Conectar los conductores a los bornes correspondientes en la regleta de conexiones del panel de control (consultar para ello las instrucciones incluidas en los kit de panel de control).

¡¡ATENCIÓN!!

Antes de acceder a los medios de conexión, todos los circuitos de conexión deben ser desconectados

Panel de control tipo TS



Pilotos de señalización

Teº - Termómetro

TRº - Termostato de regulación

El panel de control TS es adecuado para instalaciones donde el propio depósito acumulador ejerce el control sobre la producción de A.C.S. por circuito de caldera.

Panel de control tipo TD

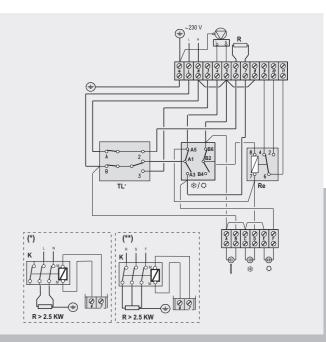
- Pilotos de señalización

Te° - Termómetro

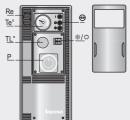
TL° - Termostato de regulación y limitador de seguridad

♦/ ☼ - Ínterruptor invierno verano

R - Resistencia


Re - Relé

K - Contactor externo


El panel de control TD es adecuado para instalaciones donde el propio depósito acumulador ejerce el control sobre la producción de A.C.S. por circuito de caldera (posición ♣) o por calentamiento eléctrico (posición ♣). Para resistencias eléctricas superiores a 2.5 kW, es necesario realizar la

Para resistencias eléctricas superiores a 2.5 kW, es necesario realizar la conexión de la resistencia al panel de control por medio de un contactor externo (no suministrado), s/UNE-EN 60947.

NOTA (*) Esquema para resistencias >2.5 KW ~230 V (**) Esquema para resistencias >2.5 KW 3~400 V

Panel de control tipo TPA

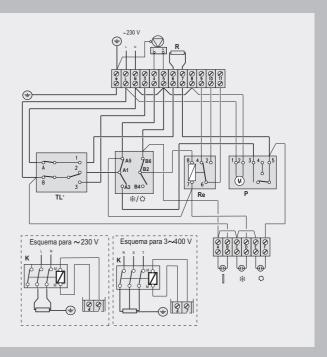
- Pilotos de señalización

Teº - Termómetro

TL° - Termostato de regulación y limitador de seguridad

※/☼- Interruptor invierno verano

R - Resistencia


Re - Relé

P - Programador analógico

K - Contactor externo

El panel de control TPA es adecuado para instalaciones donde el propio depósito acumulador ejerce el control sobre la producción de A.C.S. por circuito de caldera (posición \circledast) o por calentamiento eléctrico con programación horaria analógica (posición \circlearrowleft).

Para todas las resistencias eléctricas a instalar es necesario realizar la conexión de la resistencia al panel de control por medio de un contactor externo (no suministrado), s/UNE-EN 60947.

Producción de A.C.S.

(Diagramas de producción de A.C.S. y pérdidas de carga en circuito primario de calentamiento)

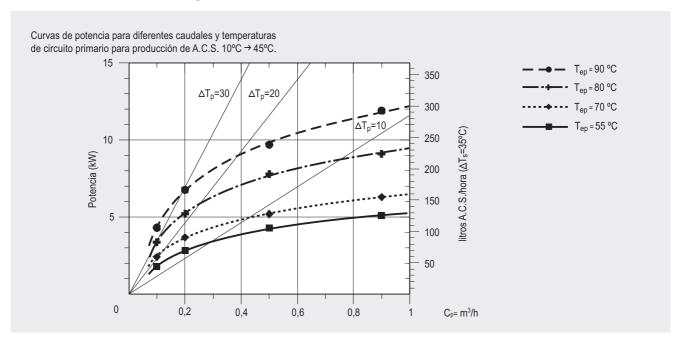
•	Instrucciones		39
•	Modelo CV-80-M1S		40
•	Modelo CV-110-M1S		41
•	Modelo CV-150-M1S		42
•	Modelo CV-200-M1S		43
•	Modelo CV-300-M1S		44
•	Modelo CV-90-M1M		40
•	Modelo CV-120-M1M		42
•	Modelo CV-160-M1M		43
•	Modelo CV-110-M1		45
•	Modelo CV-150-M1		46
•	Modelo CV-200-M1		47
•	Modelo CV-300-M1		48
•	Modelo CV-500-M1		49
•	Modelo CV-750-M1		50
•	Modelo CV-1000-M1		51
•	Modelo CV-1500-M1		52
•	Modelo CV-800-M1B		50
•	Modelo CV-1000-M1B		51
•	Modelo CV-1500-M1B		52
•	Modelo CV-300-M2	48 y	53
•	Modelo CV-400-M2	54 y	53
•	Modelo CV-500-M2	49 y	55
•	Modelo CV-750-M2	50 y	56
•	Modelo CV-1000-M2	51 v	56

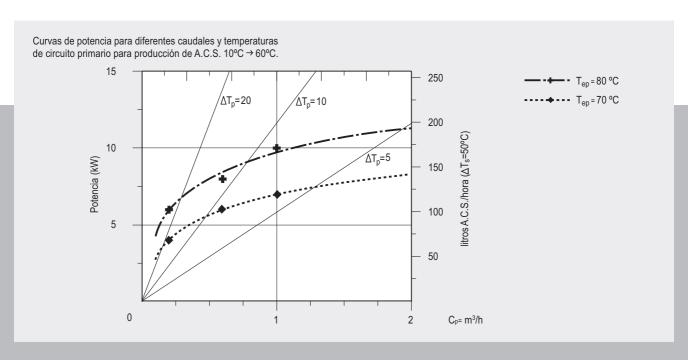
•	Modelo	CV-800-M2B	50	y 56
•	Modelo	CV-1000-M2B	51	y 56
•	Modelo	CV-1500-M2B	52	y 57
•	Modelo	CV-160-HLM		_ 44
•	Modelo	CV-200-HL		_ 58
•	Modelo	CV-300-HL		_ 59
•	Modelo	CV-400-HL		_ 60
•	Modelo	CV-500-HL		_ 61
•	Modelo	CV-750-HL		_ 62
•	Modelo	CV-1000-HL		_ 63
•	Modelo	CV-800-HLB		_ 62
•	Modelo	CV-1000-HLB		_ 63
•	Modelo	CV-350-HL/DUO	64	y 65
•	Modelo	CV-600-P	66	y 69
•	Modelo	CV-800-P	67	y 70
•	Modelo	CV-1000-P	68	y 71
•	Modelo	CV-800-P/DUO	67	y 70
•	Modelo	CV-1000-P/DUO	68	y 71

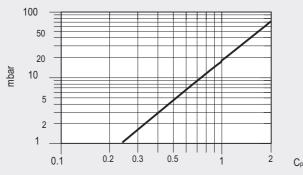
Introducción:

Nuestro laboratorio de ensayos dispone de las instalaciones e instrumentación de medida y control necesarios para la reproducción real de las condiciones de ensayo de nuestros depósitos.

De esta forma se han obtenido los datos técnicos que se exponen a continuación, teniendo en cuenta que en una instalación real son difícilmente reproducibles las condiciones idóneas de ensayo.

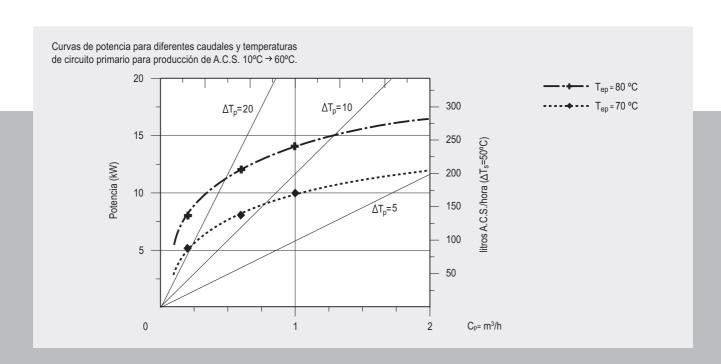

El mantenimiento de temperaturas constantes en el circuito primario, la medición y mantenimiento constante de caudales y saltos térmicos estabilizados en el circuito secundario, son algunas de las dificultades por las que no es posible reproducir estos ensayos en cualquier instalación.

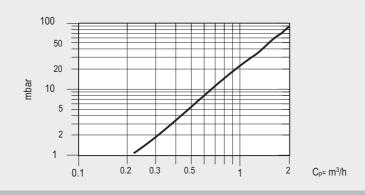

Por ello, nuestros clientes si así lo desean, pueden comprobar en nuestro laboratorio todos y cada uno de los datos que a continuación exponemos, reproduciendo las condiciones de ensayo de acuerdo a la normativa que ha sido utilizada para este fin

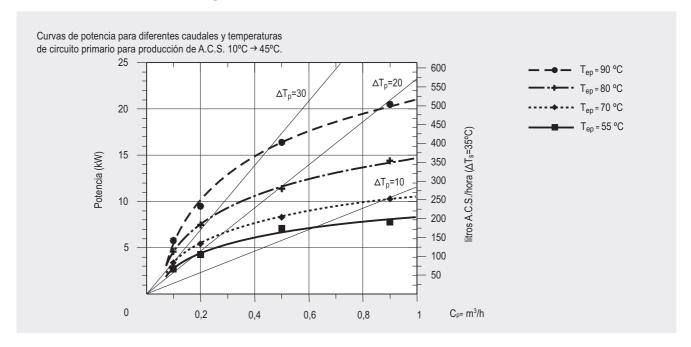

Definiciones para la interpretación de los diagramas:

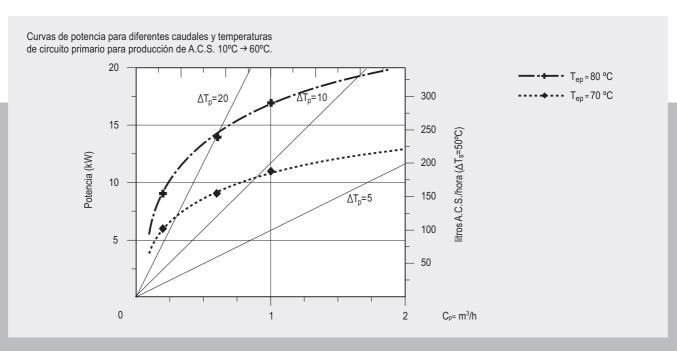
- Potencia absorbida (P): Potencia que es capaz de absorber el depósito a una temperatura y caudal constantes de entrada de circuito primario.
- Caudal del circuito primario (Cp): Caudal de agua de calentamiento impulsado por el circulador del circuito primario y medido a la salida de éste.
- **Pérdida de carga (-△P):** Pérdida de presión entre la entrada y la salida del circuito primario sin tener en cuenta llaves, codos o cualquier elemento añadido al depósito.
- △Tp: Salto térmico en circuito primario de calentamiento.
- △Ts: Salto térmico en circuito secundario.
- Tep: Temperatura de entrada de circuito primario de calentamiento.
- Ts: Temperatura de entrada de circuito secundario (agua fría).

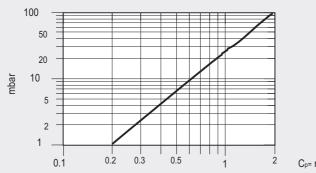
Modelos CV-80-M1S y CV-90-M1M

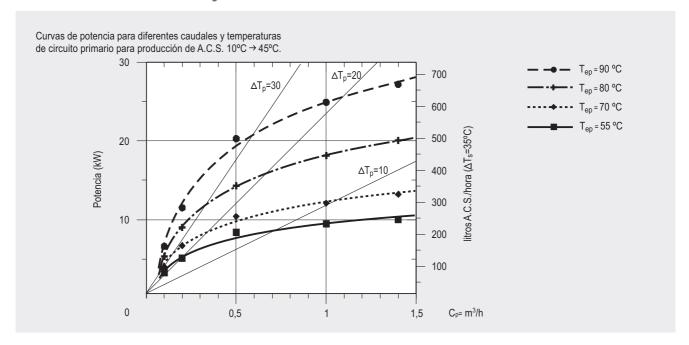


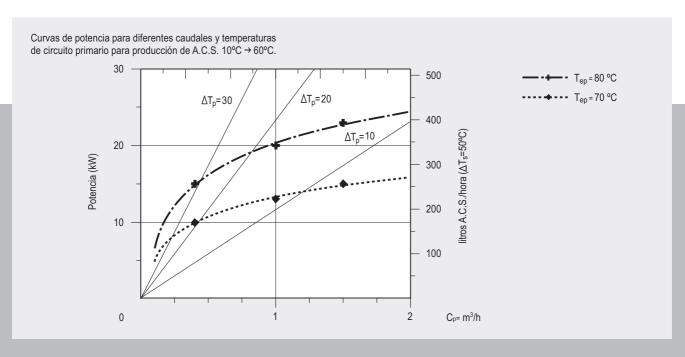


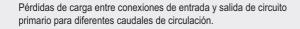

Modelos CV-110-M1S

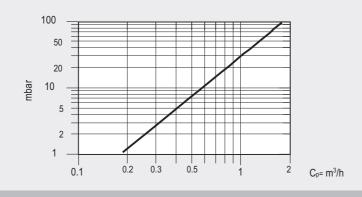

Curvas de potencia para diferentes caudales y temperaturas de circuito primario para producción de A.C.S. 10°C → 45°C. 20 — T_{ep} = 90 °C 450 18 T_{ep} = 80 °C $\Delta T_p = 30$ $\Delta T_p = 20$ 400 --- T_{ep} = 70 °C 16 **-** T_{ep} = 55 °C 350 14 litros A.C.S./hora (AT_s=35°C) 12 300 Potencia (kW) $\Delta T_p = 10$ 10 250 8 200 6 150 4 100 2 50 0 0,2 0,4 0,6 0,8 $C_p = m^3/h$



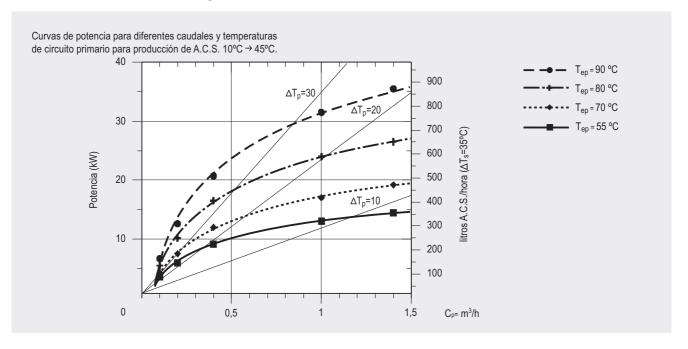

Modelos CV-150-M1S y CV-120-M1M

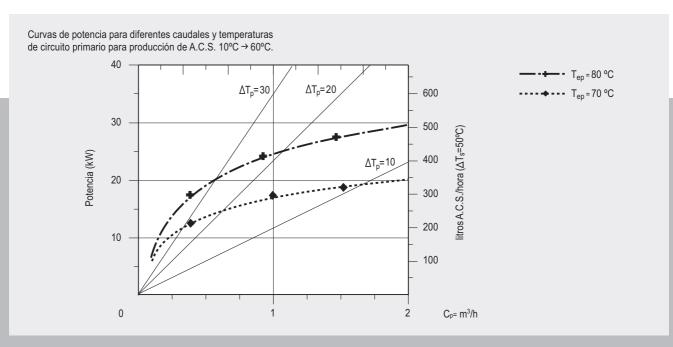


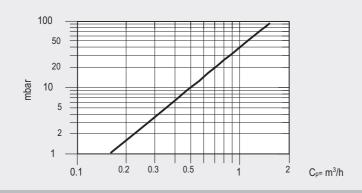


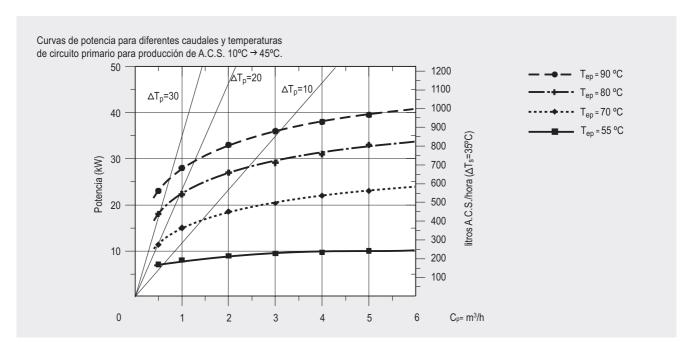


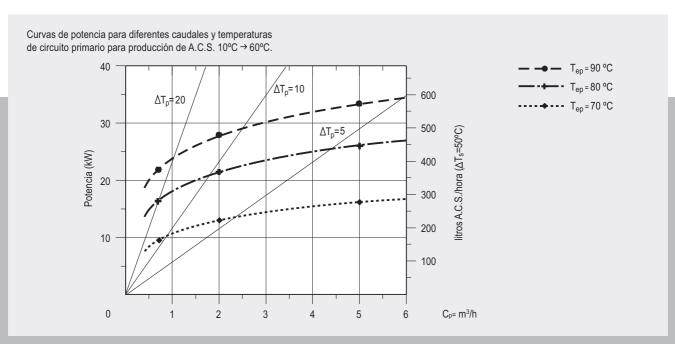
Modelos CV-200-M1S y CV-160-M1M

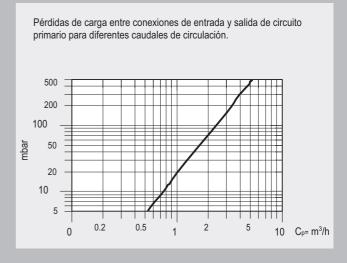




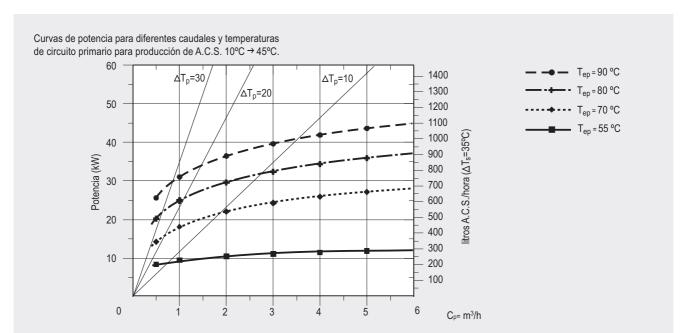


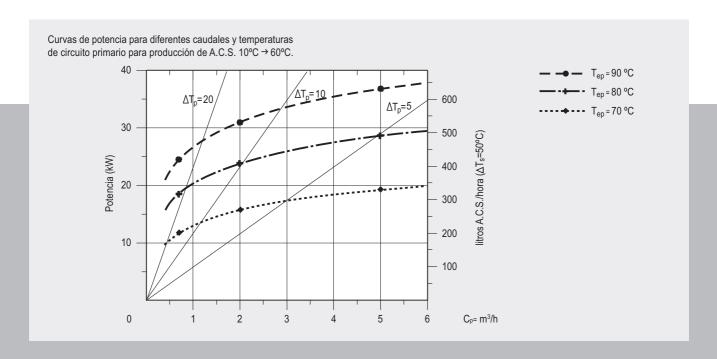

Modelos CV-300-M1S y CV160 HL/M



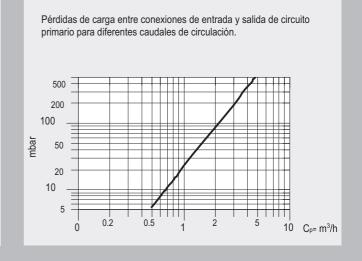


Modelos CV-110-M1

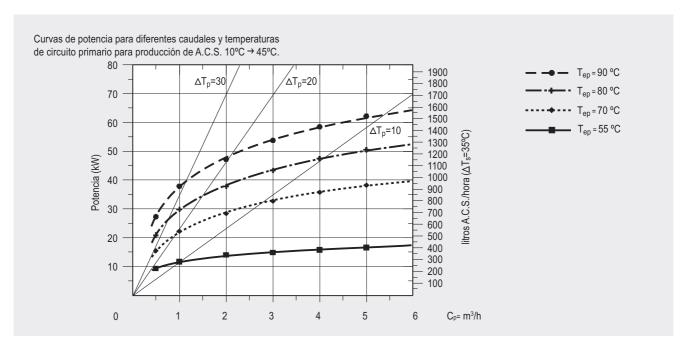


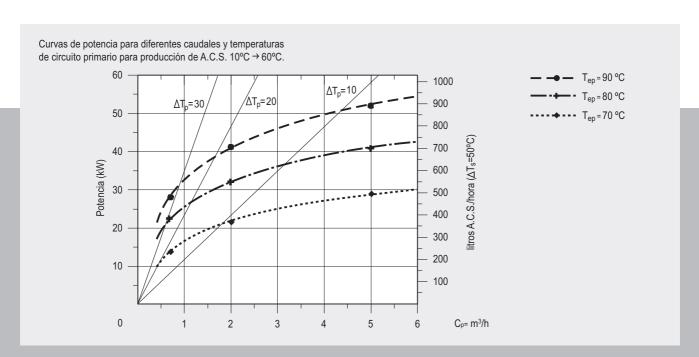


Producción de A.C.S.		
Caudal punta a 40°C	L/10'	170
Caudal punta a 45°C	L/10'	145
Caudal punta a 60°C	L/10'	100
Caudal punta a 40°C	L/60'	1060
Caudal punta a 45°C	L/60'	885
Caudal punta a 60°C	L/60'	525
Caudal continuo a 40°C	L/h	1070
Caudal continuo a 45°C	L/h	890
Caudal continuo a 60°C	L/h	510
Tiempo de calentamiento (de 10 a 75°C)	Min	29
Caudal de agua de calefacción	m³/h	5
T ^a (Temperatura impulsión del agua de ca	alefacciór	n) = 85 °C

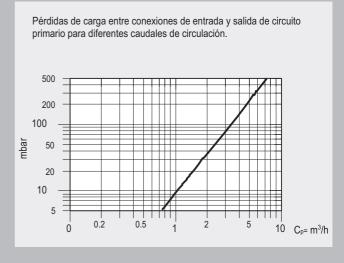


Modelos CV-150-M1

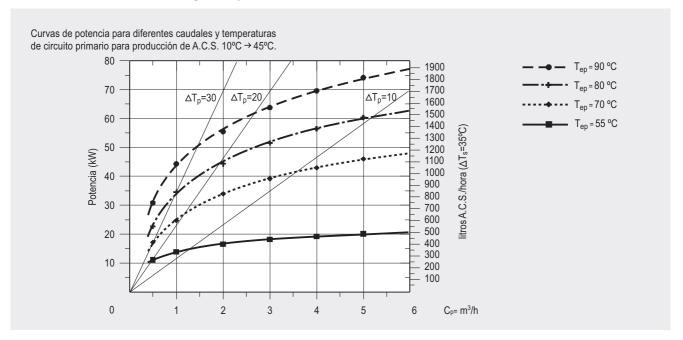


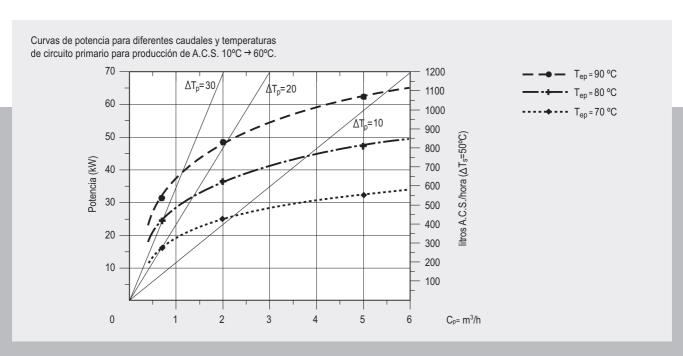


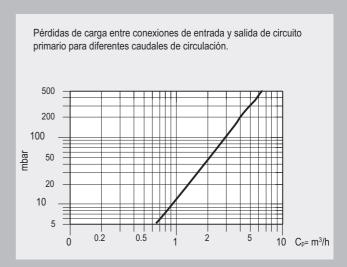
Producción de A.C.S.		
Caudal punta a 40°C	L/10'	230
Caudal punta a 45°C	L/10'	200
Caudal punta a 60°C	L/10'	140
Caudal punta a 40°C	L/60'	1160
Caudal punta a 45°C	L/60'	975
Caudal punta a 60°C	L/60'	615
Caudal continuo a 40°C	L/h	1115
Caudal continuo a 45°C	L/h	930
Caudal continuo a 60°C	L/h	570
Tiempo de calentamiento (de 10 a 75°C)	Min	35
Caudal de agua de calefacción	m³/h	5
T ^a (Temperatura impulsión del agua de ca	alefacción	ı) = 85 °(



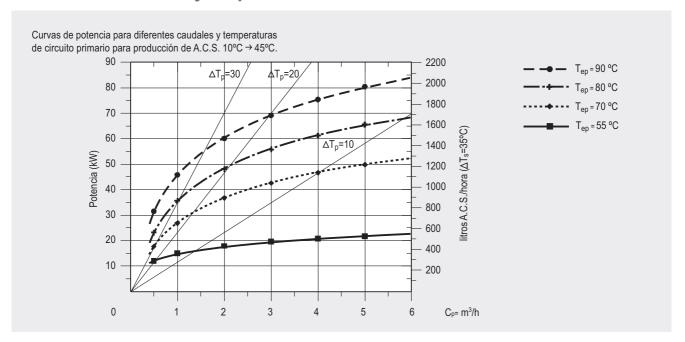
Modelos CV-200-M1

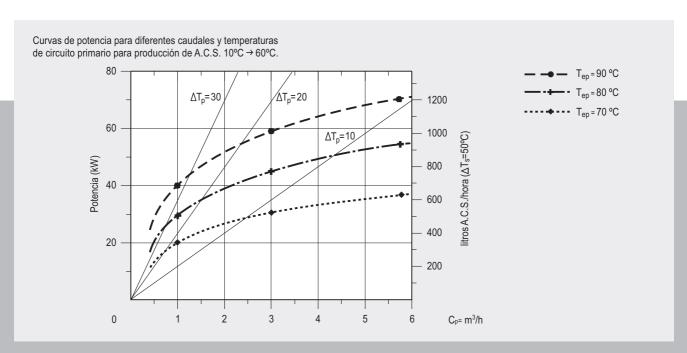


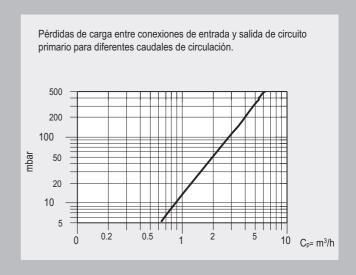

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	435
Caudal punta a 45°C	L/10'	370
Caudal punta a 60°C	L/10'	260
Caudal punta a 40°C	L/60'	1810
Caudal punta a 45°C	L/60'	1515
Caudal punta a 60°C	L/60'	930
Caudal continuo a 40°C	L/h	1650
Caudal continuo a 45°C	L/h	1375
Caudal continuo a 60°C	L/h	801
Tiempo de calentamiento (de 10 a 75°C)	Min	43
Caudal de agua de calefacción	m³/h	5
Ta(Temperatura impulsión del agua de ca	alefacción	n) = 85 °C



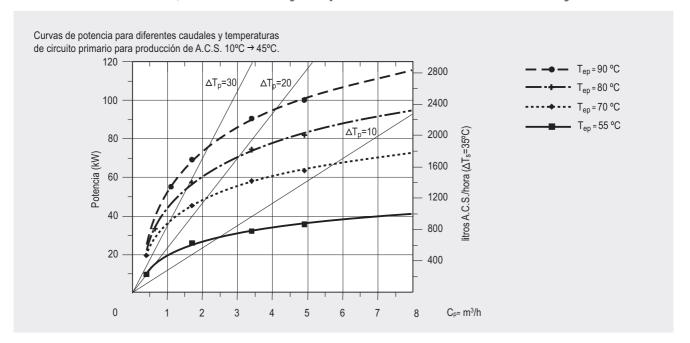
Modelos CV-300-M1 y serpentín inferior de CV-300-M2

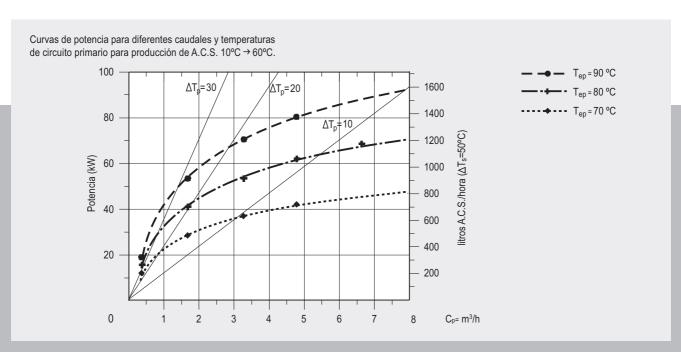


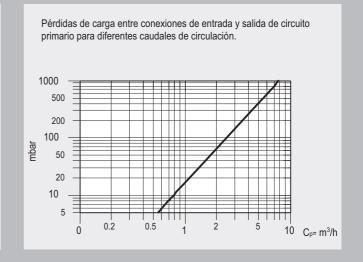

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	605
Caudal punta a 45°C	L/10'	520
Caudal punta a 60°C	L/10'	365
Caudal punta a 40°C	L/60'	2330
Caudal punta a 45°C	L/60'	1960
Caudal punta a 60°C	L/60'	1185
Caudal continuo a 40°C	L/h	2070
Caudal continuo a 45°C	L/h	1725
Caudal continuo a 60°C	L/h	985
Tiempo de calentamiento (de 10 a 75°C)	Min	48
Caudal de agua de calefacción	m³/h	6
T ^a (Temperatura impulsión del agua de c	alefacció	n) = 85 °C



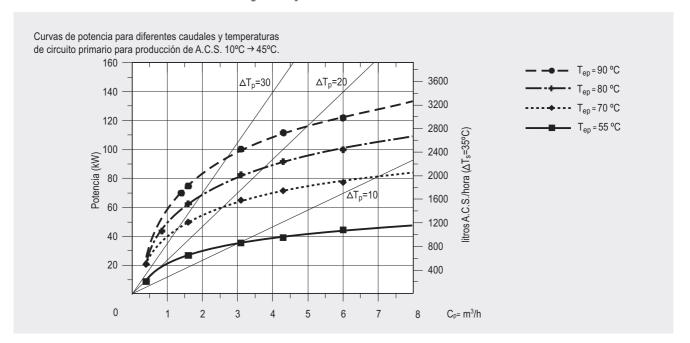
Modelos CV-500-M1 y serpentín inferior de CV-500-M2

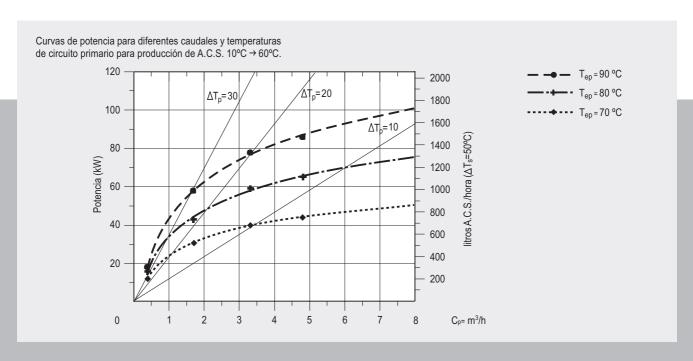


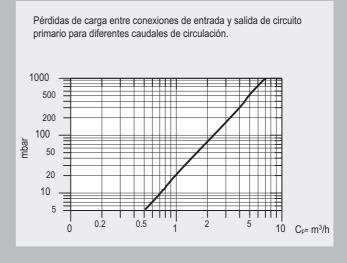

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	1085
Caudal punta a 45°C	L/10'	930
Caudal punta a 60°C	L/10'	650
Caudal punta a 40°C	L/60'	2960
Caudal punta a 45°C	L/60'	2490
Caudal punta a 60°C	L/60'	1555
Caudal continuo a 40°C	L/h	2250
Caudal continuo a 45°C	L/h	1875
Caudal continuo a 60°C	L/h	1085
Tiempo de calentamiento (de 10 a 75°C)	Min	56
Caudal de agua de calefacción	m³/h	6
T ^a (Temperatura impulsión del agua de ca	alefacciór	n) = 85 °C



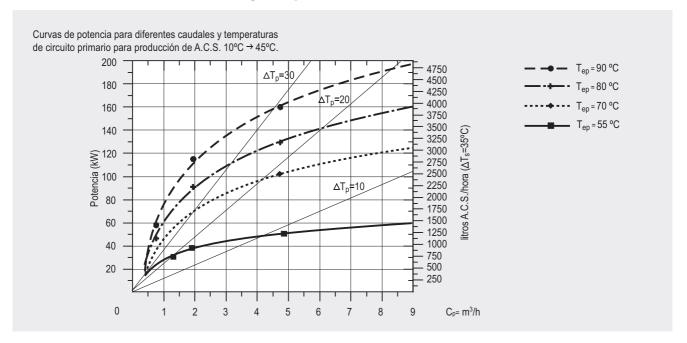
Modelos CV-750-M1, CV-800-M1B y serpentín inferior de CV-750-M2 y CV-800-M2B

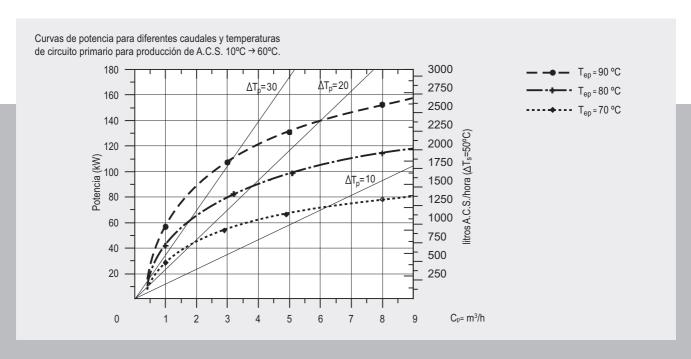


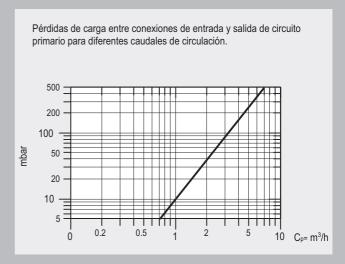

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	1625
Caudal punta a 45°C	L/10'	1395
Caudal punta a 60°C	L/10'	975
Caudal punta a 40°C	L/60'	4105
Caudal punta a 45°C	L/60'	3460
Caudal punta a 60°C	L/60'	2140
Caudal continuo a 40°C	L/h	2975
Caudal continuo a 45°C	L/h	2480
Caudal continuo a 60°C	L/h	1395
Tiempo de calentamiento (de 10 a 75°C)	Min	63
Caudal de agua de calefacción	m³/h	8
Ta(Temperatura impulsión del agua de ca	alefacción) = 85 °C

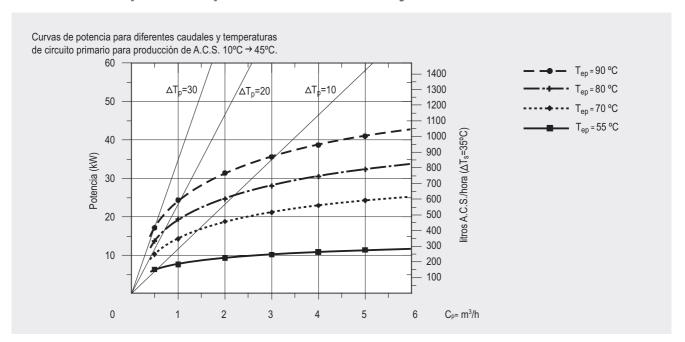


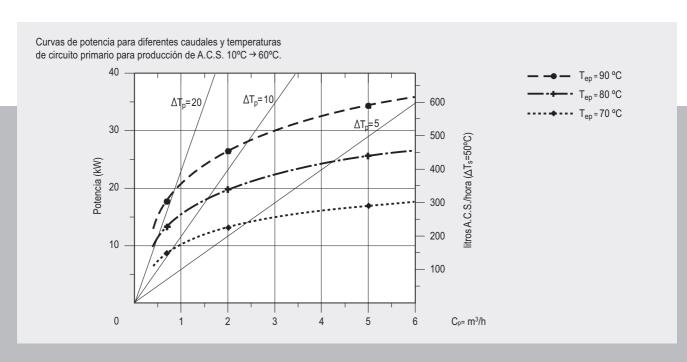
Modelos CV-1000-M1/M1B y serpentín inferior de CV-1000-M2/M2B




Producción de A.C.S.		
Caudal punta a 40°C	L/10'	1950
Caudal punta a 45°C	L/10'	1670
Caudal punta a 60°C	L/10'	1170
Caudal punta a 40°C	L/60'	4935
Caudal punta a 45°C	L/60'	4160
Caudal punta a 60°C	L/60'	2440
Caudal continuo a 40°C	L/h	3580
Caudal continuo a 45°C	L/h	2985
Caudal continuo a 60°C	L/h	1525
Tiempo de calentamiento (de 10 a 75°C)	Min	70
Caudal de agua de calefacción	m³/h	8
T ^a (Temperatura impulsión del agua de ca	alefacciór	n) = 85 °(

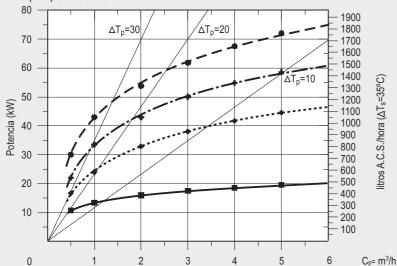

Modelos CV-1500-M1/M1B y serpentin inferior de CV-1500-M2B

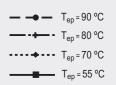


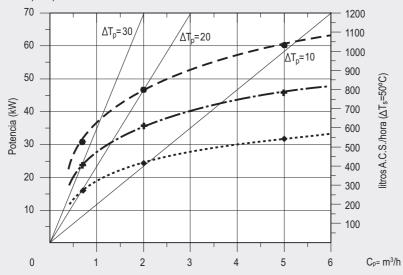

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	3140
Caudal punta a 45°C	L/10'	2695
Caudal punta a 60°C	L/10'	1885
Caudal punta a 40°C	L/60'	6665
Caudal punta a 45°C	L/60'	5630
Caudal punta a 60°C	L/60'	3565
Caudal continuo a 40°C	L/h	4230
Caudal continuo a 45°C	L/h	3525
Caudal continuo a 60°C	L/h	2015
Tiempo de calentamiento (de 10 a 75°C)	Min	81
Caudal de agua de calefacción	m³/h	8
Ta/Temperatura impulsión del agua de ca	alefacció	n) = 85 º

Ta(Temperatura impulsión del agua de calefacción) = 85 °C

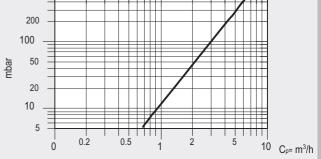
Modelos: Serpentín superior de CV-300-M2 y CV-400-M2





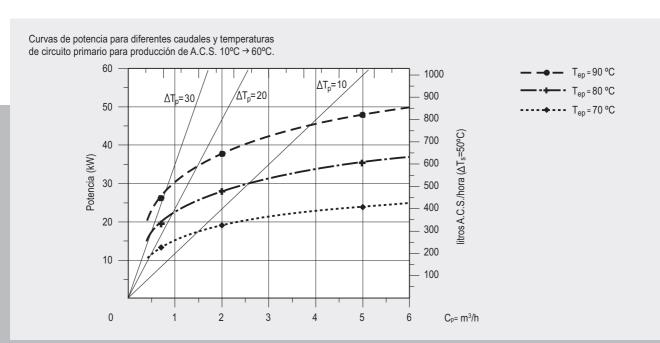

Modelos: Serpentín inferior de CV-400-M2

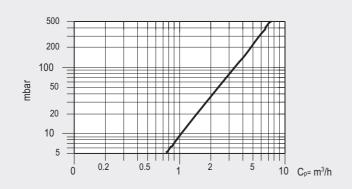
Curvas de potencia para diferentes caudales y temperaturas de circuito primario para producción de A.C.S. 10° C \rightarrow 45° C.


Curvas de potencia para diferentes caudales y temperaturas de circuito primario para producción de A.C.S. 10° C \rightarrow 60° C.

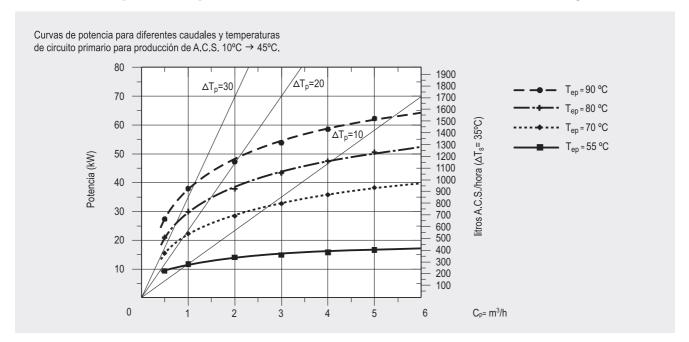
 $T_{ep} = 90 ^{\circ}C$
 T _{ep} = 80 °C
 T _{ep} =70 °C

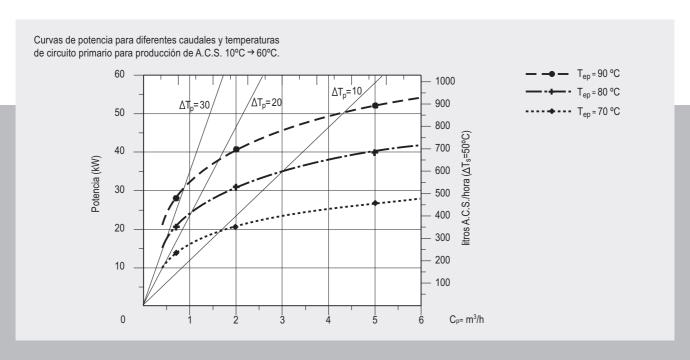
Producción de A.C.S.		
Caudal punta a 40°C	L/10'	835
Caudal punta a 45°C	L/10'	715
Caudal punta a 60°C	L/10'	500
Caudal punta a 40°C	L/60'	2505
Caudal punta a 45°C	L/60'	2105
Caudal punta a 60°C	L/60'	1295
Caudal continuo a 40°C	L/h	2005
Caudal continuo a 45°C	L/h	1670
Caudal continuo a 60°C	L/h	955
Tiempo de calentamiento (de 10 a 75°C)	Min	53
Caudal de agua de calefacción	m³/h	6

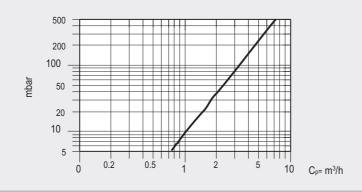

Ta(Temperatura impulsión del agua de calefacción) = 85 °C



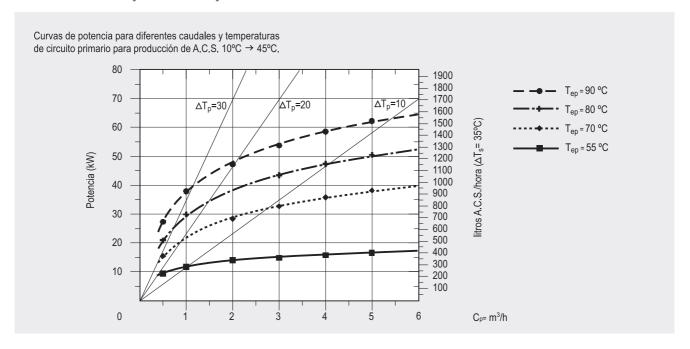
Modelos: Serpentín superior de CV-500-M2

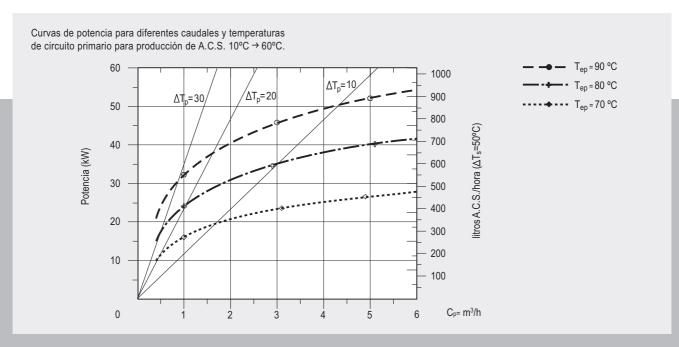


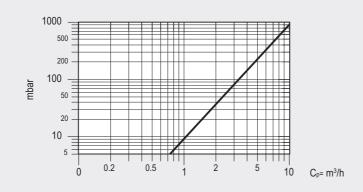


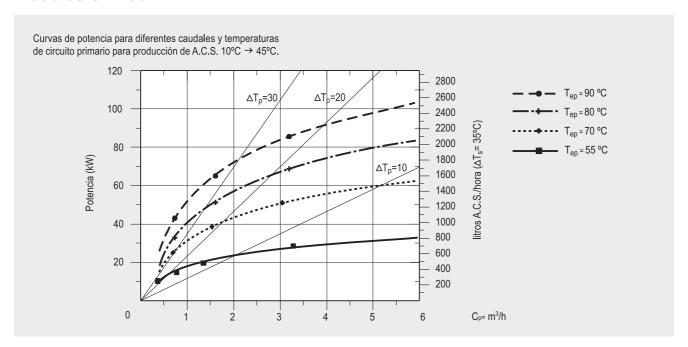

Curvas características

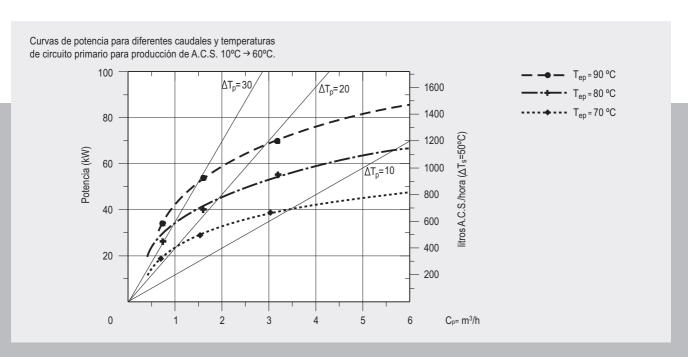
lapesa


Modelos: Serpentín superior de CV-750M2, CV-800-M2B, CV-1000-M2 y CV-1000-M2B



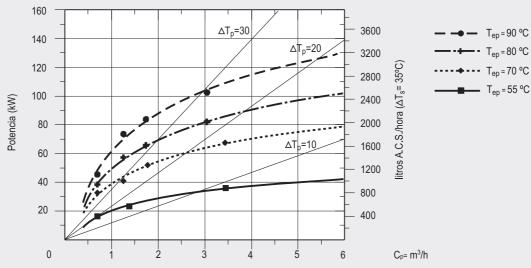


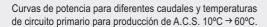

Modelos: Serpentin superior de CV-1500-M2B

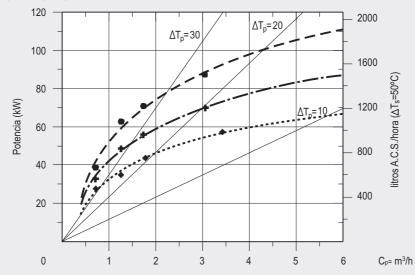




Modelos CV-200-HL

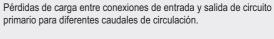


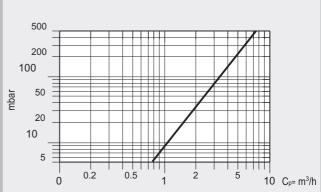

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	435
Caudal punta a 45°C	L/10'	370
Caudal punta a 60°C	L/10'	260
Caudal punta a 40°C	L/60'	2750
Caudal punta a 45°C	L/60'	2295
Caudal punta a 60°C	L/60'	1355
Caudal continuo a 40°C	L/h	2775
Caudal continuo a 45°C	L/h	2310
Caudal continuo a 60°C	L/h	1314
Tiempo de calentamiento (de 10 a 75°C)	Min	26
Caudal de agua de calefacción	m³/h	6
T ^a (Temperatura impulsión del agua de ca	alefacció	n) = 85 º



Modelos CV-300-HL

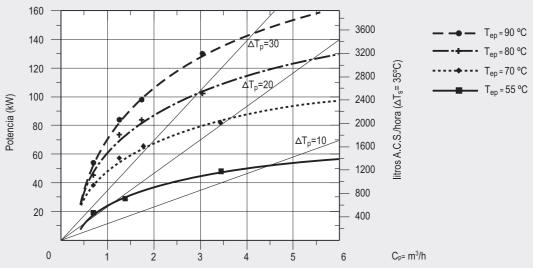
Curvas de potencia para diferentes caudales y temperaturas de circuito primario para producción de A.C.S. $10^{\circ}\text{C} \to 45^{\circ}\text{C}$.

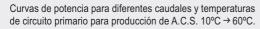


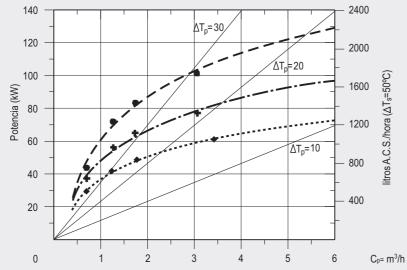


- → -	T_{ep} = 90 °C
	T_{ep} = 80 °C
	T _{ep} = 70 °C

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	605
Caudal punta a 45°C	L/10'	520
Caudal punta a 60°C	L/10'	365
Caudal punta a 40°C	L/60'	3470
Caudal punta a 45°C	L/60'	2910
Caudal punta a 60°C	L/60'	1785
Caudal continuo a 40°C	L/h	3440
Caudal continuo a 45°C	L/h	2865
Caudal continuo a 60°C	L/h	1705
Tiempo de calentamiento (de 10 a 75°C)	Min	32
Caudal de agua de calefacción	m³/h	6

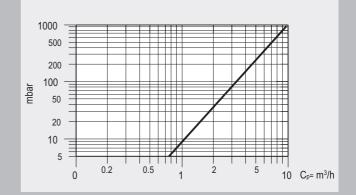

T^a(Temperatura impulsión del agua de calefacción) = 85 °C

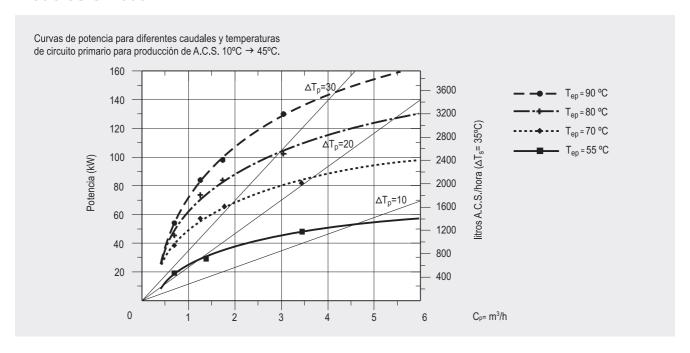


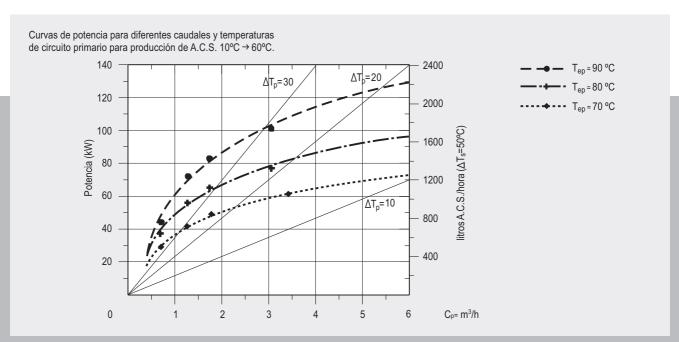


Modelos CV-400-HL

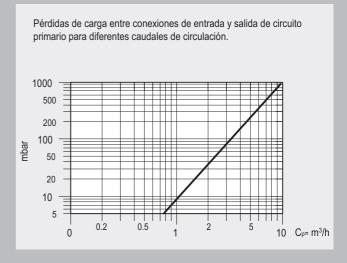
Curvas de potencia para diferentes caudales y temperaturas de circuito primario para producción de A.C.S. 10°C \to 45°C.

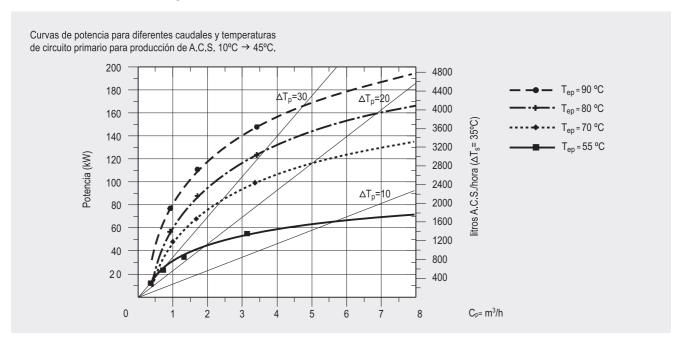


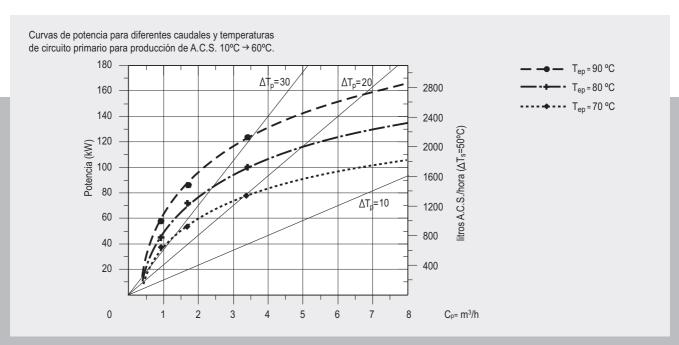



 T _{ep} = 90 °C
 T _{ep} = 80 °C
 T _{ep} = 70 °C

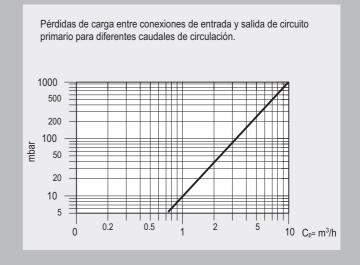
Producción de A.C.S.		
Caudal punta a 40°C	1/10'	835
Caudal punta a 45°C	L/10'	715
	_,	
Caudal punta a 60°C	L/10'	500
Caudal punta a 40°C	L/60'	4455
Caudal punta a 45°C	L/60'	3730
Caudal punta a 60°C	L/60'	2140
Caudal continuo a 40°C	L/h	4345
Caudal continuo a 45°C	L/h	3620
Caudal continuo a 60°C	L/h	1965
Tiempo de calentamiento (de 10 a 75°C)	Min	35
Caudal de agua de calefacción	m³/h	6
T ^a (Temperatura impulsión del agua de ca	alefacció	n) = 85 °C


Modelos CV-500-HL

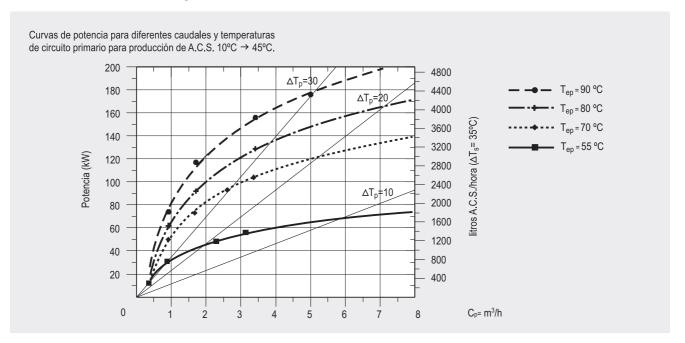


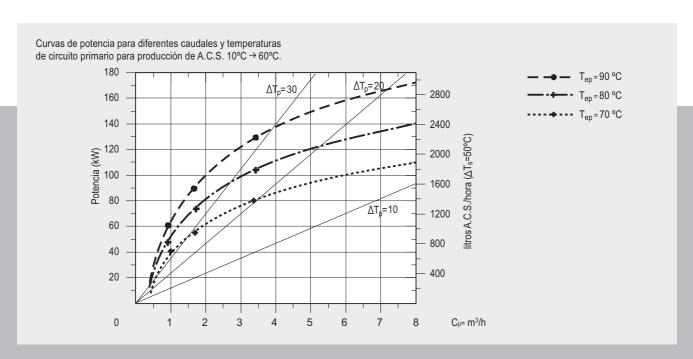

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	1085
Caudal punta a 45°C	L/10'	930
Caudal punta a 60°C	L/10'	650
Caudal punta a 40°C	L/60'	4705
Caudal punta a 45°C	L/60'	3945
Caudal punta a 60°C	L/60'	2290
Caudal continuo a 40°C	L/h	4345
Caudal continuo a 45°C	L/h	3620
Caudal continuo a 60°C	L/h	1965
Tiempo de calentamiento (de 10 a 75°C)	Min	39
Caudal de agua de calefacción	m³/h	6
Ta/Tomporatura impulaión dal agua da as	lofocoió	~\ OF 0

T^a(Temperatura impulsión del agua de calefacción) = 85 °C

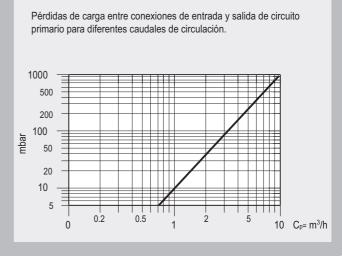


Modelos CV-750-HL y CV-800-HLB

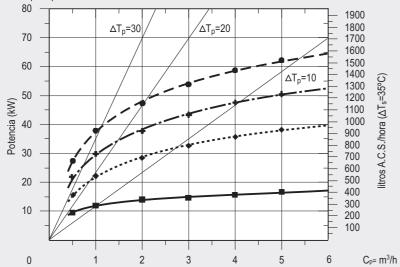


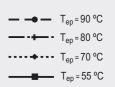


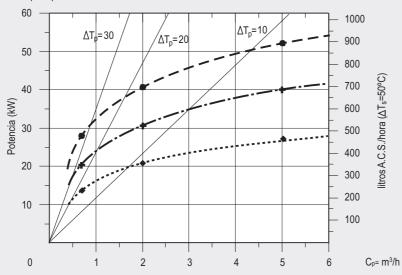
Producción de A.C.S.		
Caudal punta a 40°C	L/10'	1625
Caudal punta a 45°C	L/10'	1395
Caudal punta a 60°C	L/10'	975
Caudal punta a 40°C	L/60'	6065
Caudal punta a 45°C	L/60'	5095
Caudal punta a 60°C	L/60'	3080
Caudal continuo a 40°C	L/h	5330
Caudal continuo a 45°C	L/h	4440
Caudal continuo a 60°C	L/h	2525
Tiempo de calentamiento (de 10 a 75°C)	Min	45
Caudal de agua de calefacción	m³/h	8
Ta(Temperatura impulsión del agua de o	alefacció	n) = 85 °C



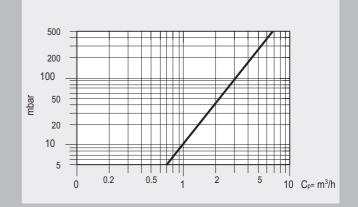
Modelos CV-1000-HL y CV-1000-HLB



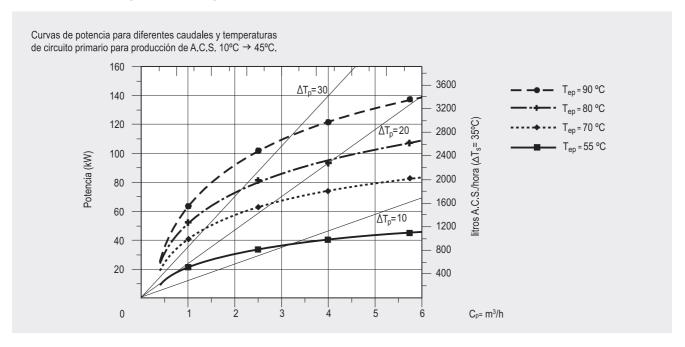

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	1950
Caudal punta a 45°C	L/10'	1670
Caudal punta a 60°C	L/10'	1170
Caudal punta a 40°C	L/60'	6605
Caudal punta a 45°C	L/60'	5550
Caudal punta a 60°C	L/60'	3415
Caudal continuo a 40°C	L/h	5585
Caudal continuo a 45°C	L/h	4655
Caudal continuo a 60°C	L/h	2696
Tiempo de calentamiento (de 10 a 75°C)	Min	54
Caudal de agua de calefacción	m³/h	8
T ^a (Temperatura impulsión del agua de ca	alefacciór	n) = 85 º

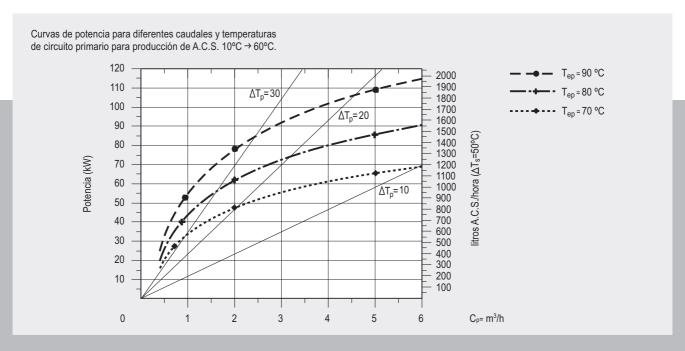

Modelos: Serpentín inferior de CV-350-HL/DUO

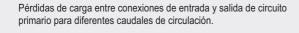
Curvas de potencia para diferentes caudales y temperaturas de circuito primario para producción de A.C.S. 10°C → 45°C.

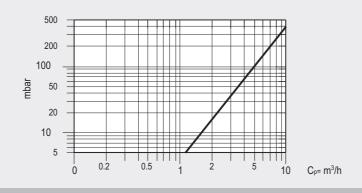

Curvas de potencia para diferentes caudales y temperaturas de circuito primario para producción de A.C.S. 10° C \rightarrow 60° C.

 T _{ep} =90 °C
 T _{ep} = 80 °C
 T _{ep} = 70 °C

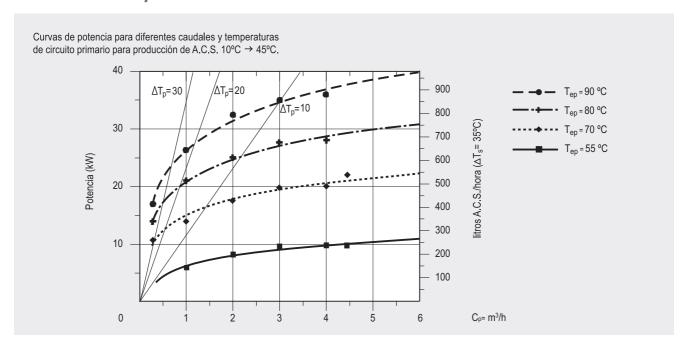

Producción de A.C.S.		
Caudal punta a 40°C	L/10'	828
Caudal punta a 45°C	L/10'	705
Caudal punta a 60°C	L/10'	478
Caudal punta a 40°C	L/60'	2280
Caudal punta a 45°C	L/60'	1903
Caudal punta a 60°C	L/60'	1168
Caudal continuo a 40°C	L/h	1743
Caudal continuo a 45°C	L/h	1438
Caudal continuo a 60°C	L/h	828
Tiempo de calentamiento (de 10 a 75°C)	Min	62
Caudal de agua de calefacción	m³/h	6

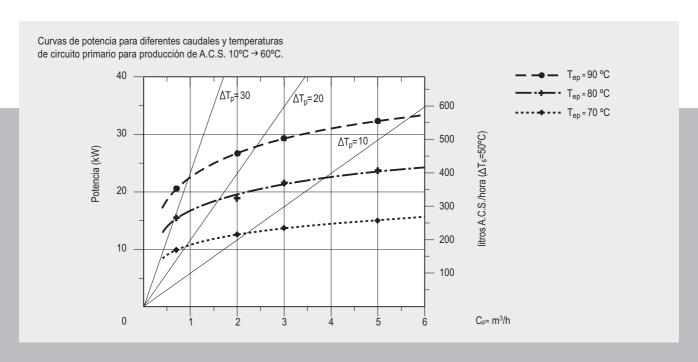

Ta(Temperatura impulsión del agua de calefacción) = 85 °C

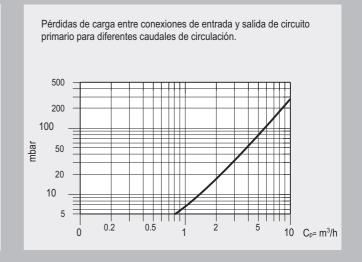




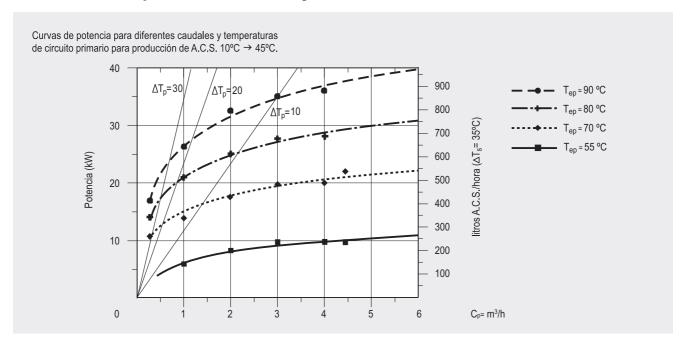
Modelos: Serpentín superior de CV-350-HL/DUO

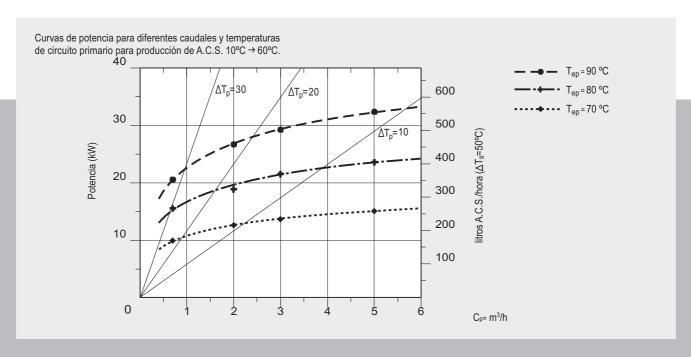




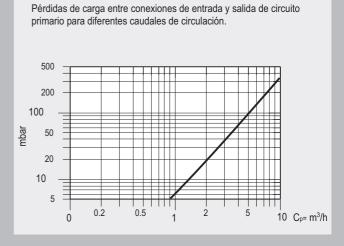


Modelos: doble pared del CV-600-P

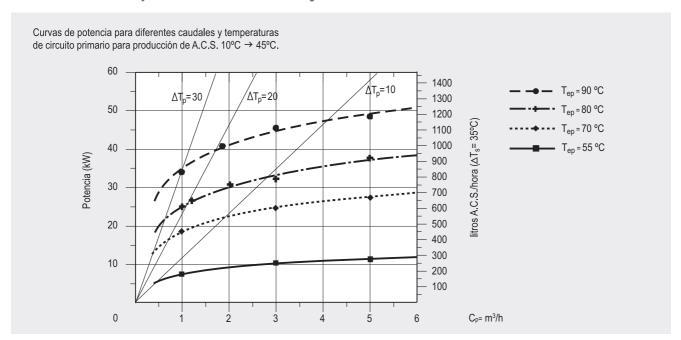


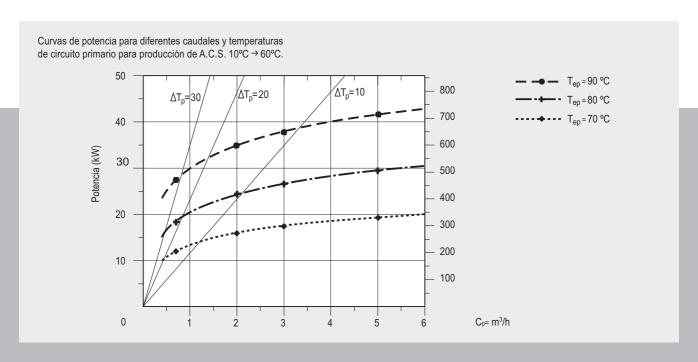


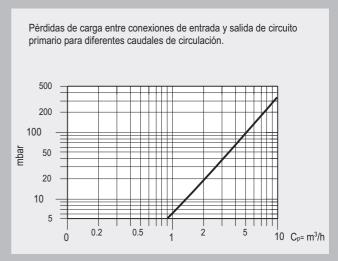
Producción de A.C.S.		
Caudal punta a 40°C	L/10'	315
Caudal punta a 45°C	L/10'	270
Caudal punta a 60°C	L/10'	185
Caudal punta a 40°C	L/60'	1160
Caudal punta a 45°C	L/60'	970
Caudal punta a 60°C	L/60'	585
Caudal continuo a 40°C	L/h	1015
Caudal continuo a 45°C	L/h	840
Caudal continuo a 60°C	L/h	480
Tiempo de calentamiento (de 10 a 75°C)	Min	45
Caudal de agua de calefacción	m³/h	5
Ta/Temperatura impulsión del agua de ca	alefacció	n) = 85 °C



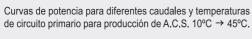
Modelos: doble pared del CV-800-P y CV-800-P/DUO

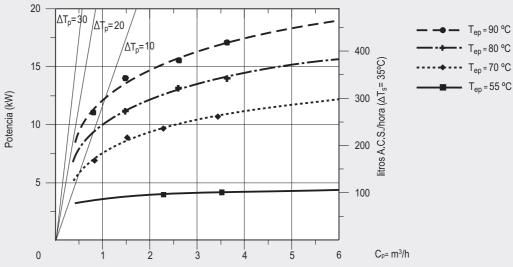



Producción de A.C.S.		
Caudal punta a 40°C	L/10'	315
Caudal punta a 45°C	L/10'	270
Caudal punta a 60°C	L/10'	185
Caudal punta a 40°C	L/60'	1160
Caudal punta a 45°C	L/60'	970
Caudal punta a 60°C	L/60'	585
Caudal continuo a 40°C	L/h	1015
Caudal continuo a 45°C	L/h	840
Caudal continuo a 60°C	L/h	480
Tiempo de calentamiento (de 10 a 75°C)	Min	45
Caudal de agua de calefacción	m³/h	5
T ^a (Temperatura impulsión del agua de ca	alefacció	n) = 85 °(

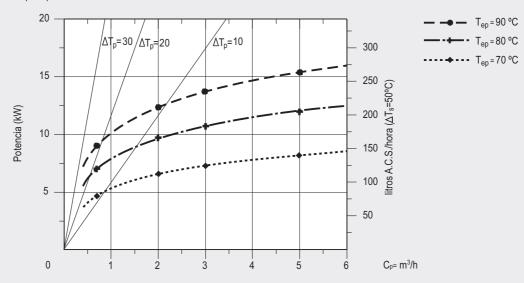


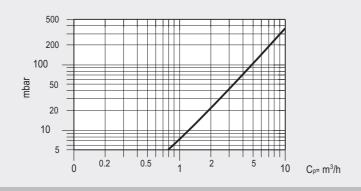
Modelos: doble pared del CV-1000-P y CV-1000-P/DUO

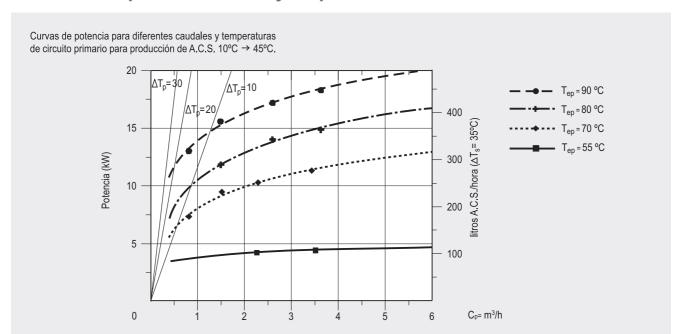


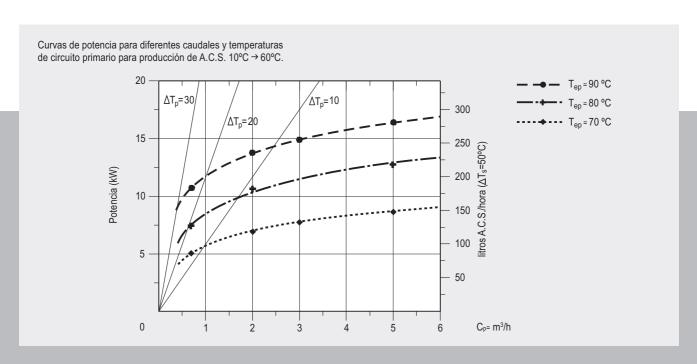


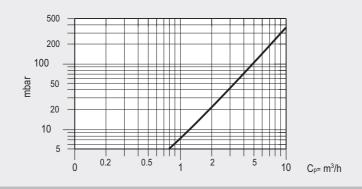
Producción de A.C.S.		
Caudal punta a 40°C	L/10'	420
Caudal punta a 45°C	L/10'	360
Caudal punta a 60°C	L/10'	255
Caudal punta a 40°C	L/60'	1490
Caudal punta a 45°C	L/60'	1245
Caudal punta a 60°C	L/60'	765
Caudal continuo a 40°C	L/h	1285
Caudal continuo a 45°C	L/h	1060
Caudal continuo a 60°C	L/h	615
Tiempo de calentamiento (de 10 a 75°C)	Min	55
Caudal de agua de calefacción	m³/h	5
Ta(Temperatura impulsión del agua de ca	alefacció	n) = 85 °C

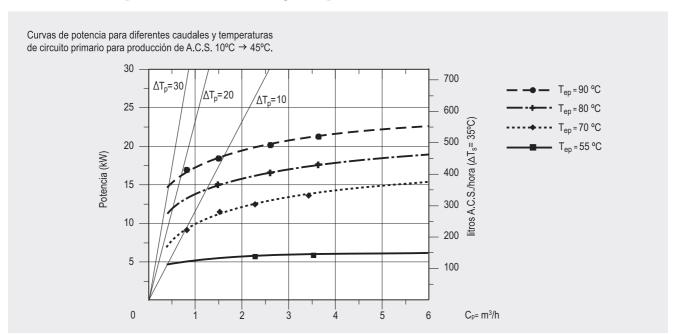


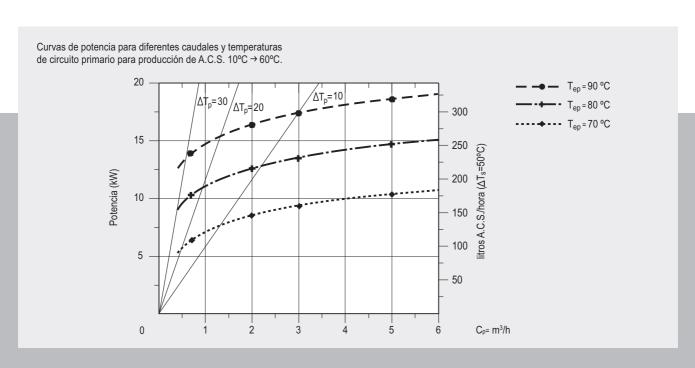

Modelos: Serpentín CV-600-P

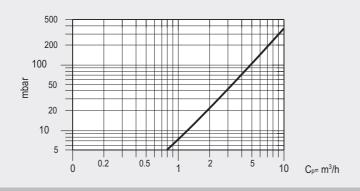

Curvas de potencia para diferentes caudales y temperaturas de circuito primario para producción de A.C.S. 10° C $\rightarrow 60^{\circ}$ C.



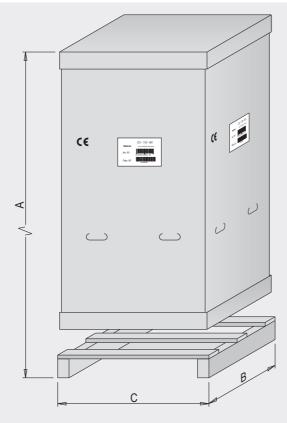



Modelos: Serpentín CV-800-P y serpentín inferior del CV-800-P/DUO





Modelos: Serpentín CV-1000-P y serpentín inferior del CV-1000-P/DUO


Unidad de suministro Complementos

•	Unidad de suministro	75
•	Complementos	76
•	Protección catódica. Ánodos de magnesio	77
	Protección catódica nermanente I anesa Correy-un	78

Embalaje

Unidad de suministro:

Los depósitos se suministran con embalaje apropiado para su manejo, ubicación e identificación correctas.

La unidad de suministro consta del depósito acumulador del modelo elegido, instrucciones para su instalación y manejo, e impresos de garantía. En el embalaje se identifica adecuadamente el modelo, color y número de fabricación del depósito.

Depósitos hasta 1000 litros:

La unidad de suministro va introducida en una bolsa de plástico precintada que lo hace completamente impermeable. A su vez el conjunto se introduce en una caja de cartón reforzado.

El paquete se fleja sobre un palet de la medida de la caja.

Depósitos de 1500 litros:

La unidad de suministro va introducida en una bolsa de plástico precintada que lo hace completamente impermeable.

Para una adecuada manipulación el depósito esta dotado de cáncamos en la parte superior para el manejo con puente grúa así como de hendiduras pacticadas en el aislante para su manejo con traspaleta.

Características té cnic	as	80	90	110	120	150	160	200	300
A: Altura total	mm.	1365	1365	1365	1365	1465	1465	1450	1935
B: Profundidad total	mm.	500	500	500	500	600	600	680	680
C: Anchura total	mm.	500	500	500	500	600	600	680	680
Peso del embalaje *	Kg.	6.7	6.7	6.7	6.7	8.0	8.0	9.2	9.6
Unidades apilables	und.	2	2	2	2	2	2	2	1

(*) A sumar a los pesos de los distintos modelos referidos en las páginas 4 a 26.

Características té cnic	as	400	500	600	750	800	1000
A: Altura total	mm.	1920	1920	1920	2050	2050	2460
B: Profundidad total	mm.	830	810	830	970	970	970
C: Anchura total	mm.	830	770	830	970	970	970
Peso del embalaje *	Kg.	12,4	11,5	14.6	20.7	20.7	20.5
Unidades apilables	und.	1	1	1	1	1	1

Resistencias eléctricas de calentamiento

Las resistencias eléctricas de calentamiento se suministran individualmente en embalaje de cartón con instrucciones de montaje.

Grupo de seguridad sanitaria

Compuesto por válvula de seguridad, antiretorno, llave de corte y conexión de sifón a desagüe.

El grupo de seguridad sanitaria esta tarado a 7 $\rm Kg/cm^2~y$ tiene conexión a 3/4" o 1".

Se suministra individualmente en caja de cartón.

Panel de control "TD" y "TPA"

Compuesto por termómetro, termostato bipolar de regulación y seguridad, interruptor invierno-verano y pilotos de indicación de funcionamiento, en el caso del panel de control "TPA" también reloj programador analógico.

Se suministra individualmente en embalaje de cartón con instrucciones de montaje.

Ánodos de magnesio

Equipo de protección catódica por medio de ánodos de sacrificio de magnesio.

Se suministra individualmente en embalaje de cartón.

Conjuntos de acabado para depósitos de 1500 litros.

No incluidos en el suministro del depósito, se componen de:

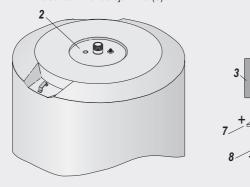
- Kit Forro, compuesto por forro acolchado en color gris "Silver-grau".
- Kit Tapas y Embellecedores, compuesto por cubierta superior y cubierta para boca de hombre lateral, ambas en color negro, y juego de embellecedores para las conexiones del depósito.

Sobre demanda, también disponemos de conjuntos especiales para intemperie o ignífugos.

Ánodos de magnesio

Depósitos hasta 1000 litros:

Los acumuladores de la serie CORAL-VITRO hasta los 1000 litros incluidos, salen de fábrica equipados con un sistema de protección por medio de ánodos de sacrificio, con el fin de proteger el interior del depósito frente a la corrosión.


Este equipo se compone de un conjunto de ánodo/s de Magnesio y un medidor de carga instalados en el depósito. Cada conjunto se compone básicamente de uno o dos ánodos de Magnesio (según modelos) (1) montado(s) convenientemente en la placa de conexiones del depósito acumulador (2), y conectado al medidor de carga externo (3), que permite conocer el grado de consumo del ánodo sin necesidad de proceder a su desmontaje.

La conexión eléctrica del medidor de carga (3) al(los) ánodo(s) (1), se realiza a través del(los) cable(s) conductor(es) (7) y (9):

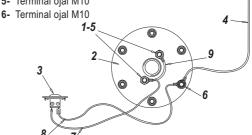
- -Al(los) ánodo(s): terminal(es) de ojal M10 (5)
- -Al medidor de carga: terminal Faston hembra 2.8 (7)

La conexión eléctrica del medidor de carga (3) a la masa, se realiza a través del cable conductor (8)

-A masa: terminal de ojal M10 (6)

DETALLE DE CONEXIÓN A MEDIDOR DE CARGA

7- Cable de conexión a ánodo


8- Cable de conexión a masa

ánodos (Terminales ojal

9- Cable de conexión entre

M10) (**)

- 1- Ánodo
- 2- Tapa sobre placa conexiones
- 3- Medidor de carga
- 4- Cable de conexión a masa (panel) (*)
- 5- Terminal ojal M10

No aplicable en depósitos con panel de control modelo "T" (*) No aplicable en depósitos con panel de control modelo "1"
 (**) No aplicable en instalación con un sólo ánodo de protección

Depósitos de 1500 litros:

Los depósitos de 1500 litros de capacidad para acumulación y producción de ACS fabricados en acero vitrificado se suministran con un equipo de protección catódica por medio de ánodos de magnesio para montar en estos depósitos.

Este equipo se compone básicamente de unos ánodos de magnesio, que deben montarse con los adaptadores, en las conexiones de 1-1/2" GAS/M del depósito acumulador, y conectarse al medidor de carga externo, esto permite conocer el grado de consumo del ánodo sin necesidad de proceder a su desmontaje.

La conexión eléctrica del medidor de carga al ánodo, se realizará a través del cable conductor:

- Al ánodo: terminal pala cerrada M 8.
- Al medidor de carga: terminal Faston 6.3.

La conexión eléctrica del medidor de carga a masa (tornillo M 4 en la tapa boca de hombre), se realizará a través del cable conductor:

- A masa: terminal pala cerrada M 4.
- Al medidor de carga: terminal Faston 2.8.

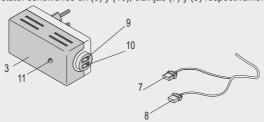
Situar el lector de carga lo más próximo posible al ánodo de magnesio.

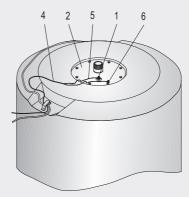
¡ADVERTENCIAS!

- · Periódicamente (al menos una vez cada 6 meses), presionando el pulsador, comprobar el estado de los ánodos de Magnesio siguiendo la pauta indicada en la página de revisión periódica de ánodos de magnesio incluida en este manual.
- · No instalar nunca ánodos permanentes de protección catódica (Lapesa Correx-up) en combinación con ánodos de Magnesio.

Protección catódica permanente

Lapesa Correx-up


Todos los acumuladores de la serie CORAL-VITRO pueden ser equipados con el sistema de protección catódica permanente LAPESA-Correx up, que es totalmente automático y libre de mantenimiento.

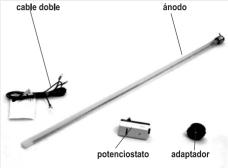

Depósitos hasta 1000 litros:

Se compone básicamente de uno o dos, según modelo, ánodos de titanio (1) montado en la placa de conexiones (2) del depósito acumulador, y conectado a un potenciostato (3) (regula automáticamente la entrada de corriente al ánodo, midiendo constantemente el potencial del depósito acumulador) a través de los conductores (4).

La conexión eléctrica del ánodo (1) al potenciostato (3) con los conductores (4), se realiza:

- Al ánodo: conexión (5), terminal Faston hembra 6.3.
- A la masa: conexión (6), terminal de ojal M10
- Al potenciostato: conexiones en (9) y (10), clavijas (7) y (8) respectivamente.

Depósitos de 1500 litros:


Este equipo se compone de un ánodo de titanio que debe montarse con el adaptador en las conexiones de 1-1/2" GAS/M del depósito y conectarse

a un potenciostato que regula automáticamente la entrada de corriente al ánodo que mide de forma continuada el potencial del depósito acumulador. La conexión eléctrica del potenciostato al ánodo se realizará a través del cable conductor:

- Al ánodo: terminal Faston 6.3.
- Al potenciostato: terminal Faston 6.3.

La conexión eléctrica del potenciostato a masa (tornillo M 4 en la tapa boca de hombre), se realizará a través del cable conductor:

- A masa: terminal en "U".
- Al potenciostato: terminal Faston 4.8.

¡ADVERTENCIAS!

- Utilizar exclusivamente los cables originales sin alargarlos ni acortarlos, ya que en caso contrario se corre el riesgo de corrosión a causa de una posible inversión de la polaridad. Instálese para ello una base de enchufe cerca del acumulador.
- El ánodo de protección entra en funcionamiento cuando el depósito está lleno de agua. Cuando no contiene agua, el piloto de control (11) parpadea en rojo.
- El piloto (11), si está de color verde, indica que el depósito recibe corriente protectora. Si el piloto no está encendido o parpadea en rojo, es preciso comprobar las conexiones, los contactos y la alimentación de la red. De persistir esta anomalía, avisar al instalador o a nuestro S.A.T. (Servicio de Asistencia Técnica a Clientes).
- En los depósitos instalados verticalmente, cuando se prevea que los periodos sin extracción de agua vayan a ser superiores a 3 meses, se recomienda la colocación de un purgador automático en la salida de A.C.S.
- El potenciostato (3) y los cables de conexión (4) no deben desconectarse, salvo para vaciar el depósito.
- No desconectar el sistema de protección durante los periodos de ausencia (vacaciones, etc.)
- Compruébese ocasionalmente el funcionamiento del piloto de control (11).
- No instalar nunca ánodos de Magnesio en combinación con ánodos permanentes de protección catódica (Lapesa Correx-up).

DELEGACIONES COMERCIALES

MADRID, GUADALAJARA, D. Rafael Guitián López de Haro

TOLEDO, CIUDAD REAL, 28039 MADRID

SEGOVIA Y ÁVILA Tel. 91 533 92 44 / Fax 91 533 95 66 / Móvil: 617 40 76 62

rguitian@lapesa.es

ALBACETE Y ALMERÍA

LEVANTE, MURCIA D. Javier Colomer Ramón

46014 VALENCIA

Tel. 96 377 12 26 / Fax 96 377 28 65 / Móvil: 654 06 52 45

levante@lapesa.es

Y CANTABRIA

PAÍS VASCO, NAVARRA D. Íñigo Pérez Puccini

48013 BILBAO

Tel. 94 441 19 68 / Fax 94 427 60 09 / Móvil: 667 61 92 80

norte@lapesa.es

EXTREMADURA Sede Central: Lapesa Grupo Empresarial S.L.

Tel. 976 46 51 80 lapesa@lapesa.es

CÁDIZ Y CÓRDOBA

SEVILLA, HUELVA, D. Manuel González Salazar

41927 MAIRENA DE ALJARAFE (Sevilla)

Tel. 95 418 03 34 / Fax 95 418 02 67 / Móvil: 629 21 28 48

mgonzalez@calcenter.es

ASTURIAS, BURGOS, LEÓN, PALENCIA,

D. Alejandro Fernández Méndez 33420 SIERO (Asturias)

SALAMANCA, VALLADOLID

Tel. 985 26 77 35 / Fax 985 26 77 35 / Móvil: 649 86 38 90

YZAMORA alejandro.fernandez@lapesa.es

JAÉN, GRANADA Y D. Pablo Morcillo Puga

MÁLAGA 18005 GRANADA

Móvil 620 95 51 15

lapesa@pmp-representaciones.es

GALICIA D. Guillermo Carrera López

36206 VIGO (Pontevedra)

Tel. 986 37 50 16/ Fax 986 25 13 88 / Móvil: 698 18 85 70

galicia@lapesa.es

ARAGÓN, SORIA, LA RIOJA Y LÉRIDA

D. Germán Arnillas Colen Móvil: 618 55 18 82

german.arnillas@lapesa.es

BALEARES D. Juan Cirer Ferrer

07141 MARRATXI

Tel. 674 78 02 78 / Móvil: 699 02 04 09

baleares@lapesa.es

BARCELONA, GERONA, Dña. Mª Carmen Santos Cañizares Y TARRAGONA 08224 TERRASA (Barcelona)

Tel. 93 788 55 30 / Fax: 937 88 41 90 / Móvil: 650 41 01 69

lapesadb@lapesa.es

PORTUGAL D. Manuel Rodrigues Tel. +351 917 55 89 65

portugal@lapesa.es

Lapesa Grupo Empresarial

Polígono Industrial Malpica, Calle A, Parcela 1-A 50016 ZARAGOZA (España) Tel. 976 46 51 80 / Fax 976 57 43 93 - 976 57 43 27 www.lapesa.es • e-mail: lapesa@lapesa.es