

TANKS AND EQUIPMENT DOMESTIC HOT WATER PRODUCTION AND STORAGE STAINLESS STEEL, VITREOUS ENAMELLED STEEL AND INERTIA BUFFER TANKS

TECHNICAL INFORMATION

TANKS AND EQUIPMENT DOMESTIC HOT WATER PRODUCTION AND STORAGE

STAINLESS STEEL, VITREOUS ENAMELLED STEEL AND INERTIA BUFFER TANKS

TECHNICAL DATA ON PERFORMANCE AND PRESSURE LOSSES FOR DHW TANKS

General Information	. 82
GX6 S/D/DEC 90	. 83
GX6 S/D/DEC 130	. 84
GX6 S/D/DEC 190	. 85
GX6 S/D/DEC 260	. 86
GX6 S/D/DEC 400	. 87
GX6 S/D/DEC 600	. 88
GX6 DE 140	89
GX6 DE 180	. 90
GX6 DE 215	. 91
GX6 DE 260	. 92
GX6 DE 400	93
GX6 DE 600	94
GX6 TS 180	. 95
GX6 TS 240	. 95
GX6 P 300	. 96
GX6 P 400	97
GX6 P 600	. 98
GX6 P 800	. 99
GX6 P 1000	100
GX6 PAC 300	101
GX6 PAC 400	102
GX6 PAC 600	103
GX-150-M1	104
GX-200-M1	105
GX-300-M1	106
GX-500-M1	107
GX-800-M1	108
GX-1000-M1	109
GX-150-TSM	110
GX-200-TSM	110
GX-300-M2	111
GX-400-M2	112
GX-500-M2	113
GX-800-M2	114
GX-1000-M2	115
CV-110-M1	116
CV-150-M1	117
CV-200-M1	118
CV-300-M1	119
СV-500-М1	120
СV-800-М1	121
CV-1000-M1	122
CV-1500-M1B	123
CV-300-M2	124
CV-400-M2	125
CV-500-M2	126
CV-800-M2	127
СV-1000-М2	128

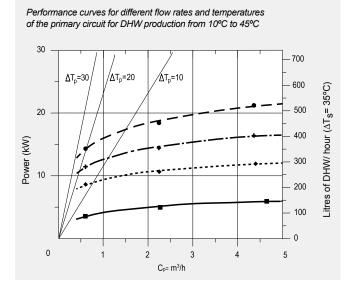
CV-160-HLM	129
CV-200-HL	130
CV-300-HL	131
CV-400-HL	132
CV-500-HL	133
CV-800-HL	134
CV-1000-HL	135
CV-350-HL/DUO	136
CV-80-M1S	137
CV-110-M1S	138
CV-150-M1S	139
CV-200-M1S	140
CV-300-M1S	141
СV-90-М1М	142
CV-120-M1M	143
СV-160-М1М	144
CV-800-P/DUO	145
CV-1000-P/DUO	145
MXV/MVV-1500-SB	146
MXV/MVV-2000-SB	147
MXV/MVV-2500-SB	148
MXV/MVV-3000-SB	149
MXV/MVV-3500-SB	150
MXV/MVV-4000-SB	151
MXV/MVV-5000/6000-SB	152
MXV/MVV-1500-SSB	153
MXV/MVV-2000-SSB	154
MXV/MVV-2500-SSB	155
MXV/MVV-3000-SSB	156
MXV/MVV-3500-SSB	157
MXV/MVV-4000-SSB	158
MXV/MVV-5000/6000-SSB	159
MXV/MVV-2000-S2B	160
MXV/MVV-3500-S2B	161
MXV/MVV-5000/6000-S2B	162
MXV/MVV-2000-SS2B	163
MXV/MVV-3500-SS2B	164
MXV/MVV-5000/6000-SS2B	165
G-260-IS	166
G-370-IS	166
G-600-IS	166
G-800-IS	167
G-1000-IS	167
G-1500-IS	
MV-1500/2000-IS	
MV-2500/3000-IS	
MV-3500/4000/5000-IS	
G-800-LW	
G-1000-LW	169

GENERAL INFORMATION

Our test laboratory has the necessary measuring and control facilities and instruments to reproduce the real test conditions of our tanks.

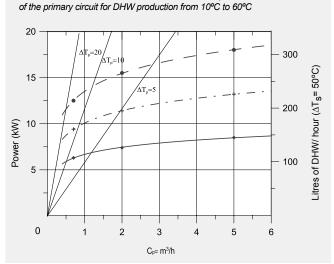
In this way, we have obtained the technical data which we present below, taking into account that in a real installation, the test conditions are difficult to reproduce.

Maintaining constant temperatures in the primary circuit, measuring and maintaining constant flow rates and stable thermal leaps in the secondary circuit is one of the difficulties that hamper the reproduction of these tests in any installation.

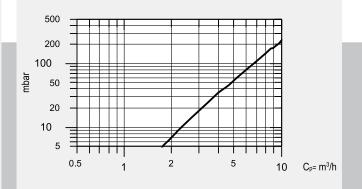

Therefore, customers who wish to do so, can verify in our laboratories each and every one of the data that we subsequently expose, reproducing the test conditions in accordance with the standard that has been used for this purpose.

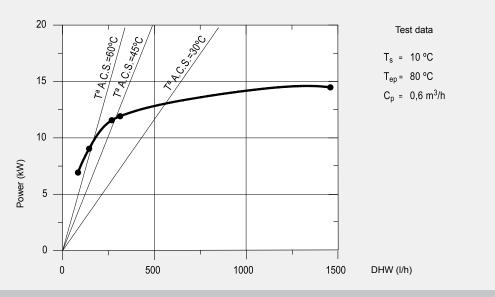
Definitions for the interpretation of the diagrams:

- Absorbed power (P): The power that the tank is capable of absorbing at a constant temperature and inflow in the primary circuit.
- **Primary circuit flow (Cp):** The flow of heating water moved by the primary circuit circulating pump and measured at the output of said pump.
- Pressure drop (ΔP): The loss of the pressure between the input and the output of the primary circuit without considering cocks, elbows, or any other element added to the tank.
- ΔTp: Temperature rise in primary heating circuit.
- ΔTs: Temperature rise in the secondary circuit.
- Tep: Input temperature in primary heating circuit.
- Ts: Input temperature in secondary circuit (cold water).


lapesa

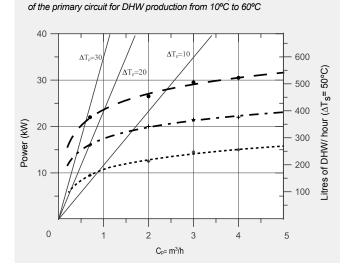
GX6 S/D/DEC 90


Performance GX6 S/D/DEC 90		
Peak flow rate at 40°C	L/10min	120
Peak flow rate at 45°C	L/10min	102
Peak flow rate at 60°C	L/10min	72
Peak flow rate at 40°C	L/60min	590
Peak flow rate at 45°C	L/60min	495
Peak flow rate at 60°C	L/60min	295
Continuous flow at 40°C	L/h	565
Continuous flow at 45°C	L/h	470
Continuous flow at 60°C	L/h	265
Preheating time from 10 to 75°C	min	28
Primary circuit flow rate	m³/h	5


Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

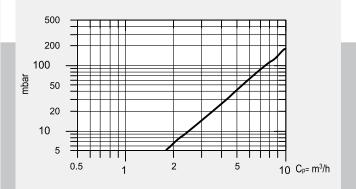
Performance curves for different flow rates and temperatures

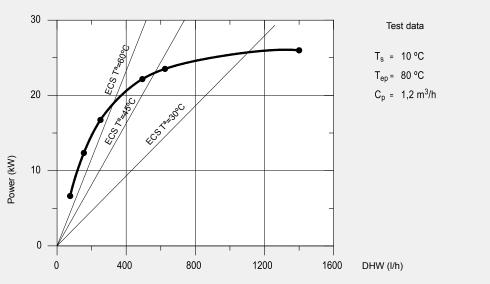
Pressure losses between input and output connections of the primary circuit for different flow rates.


lapesa

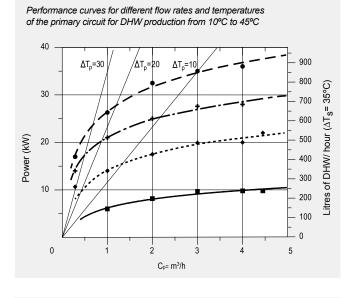
GX6 S/D/DEC 130

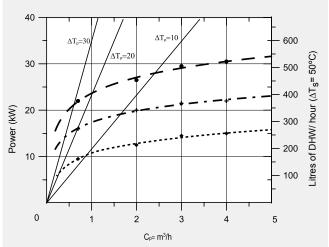
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C 40 900 ∆T_p=30 20 ΔT_{n} 800 Litres of DHW/ hour $(\Delta T_{S}=35^{\circ}C)$ 30 700 600 500 Power (kW) 20 400 300 10 200 100 0 0 5 3 4 C_p= m³/h


Performance GX S/D/DEC 130		
Peak flow rate at 40°C	L/10min	184
Peak flow rate at 45°C	L/10min	175
Peak flow rate at 60°C	L/10min	128
Peak flow rate at 40°C	L/60min	1000
Peak flow rate at 45°C	L/60min	950
Peak flow rate at 60°C	L/60min	582
Continuous flow at 40°C	L/h	960
Continuous flow at 45°C	L/h	920
Continuous flow at 60°C	L/h	545
Preheating time from 10 to 60°C	min	18
Primary circuit flow rate	m³∕h	5


Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

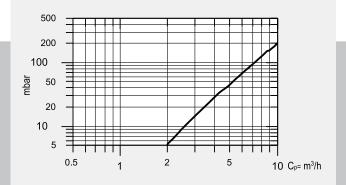
Performance curves for different flow rates and temperatures

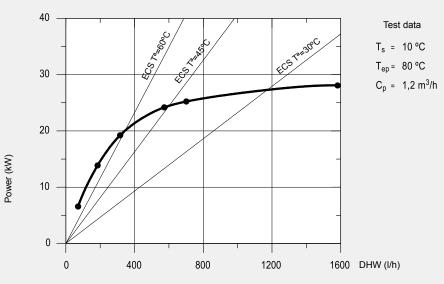

Pressure losses between input and output connections of the primary circuit for different flow rates.


lapesa

GX6 S/D/DEC 190

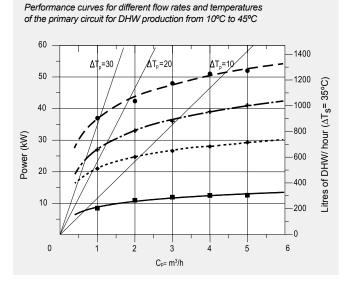
Performance GX6 S/D/DEC 190		
Peak flow rate at 40°C	L/10min	315
Peak flow rate at 45°C	L/10min	284
Peak flow rate at 60°C	L/10min	200
Peak flow rate at 40°C	L/60min	1132
Peak flow rate at 45°C	L/60min	1073
Peak flow rate at 60°C	L/60min	656
Continuous flow at 40°C	L/h	980
Continuous flow at 45°C	L/h	947
Continuous flow at 60°C	L/h	548
Preheating time from 10 to 60°C	min	27
Primary circuit flow rate	m³∕h	5

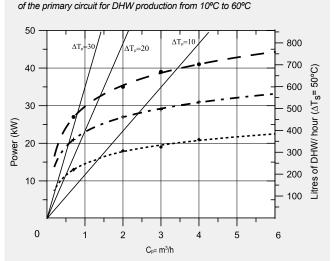

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C



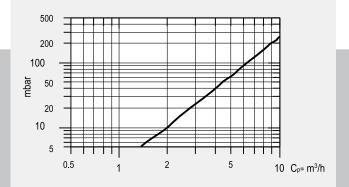
Performance curves for different flow rates and temperatures

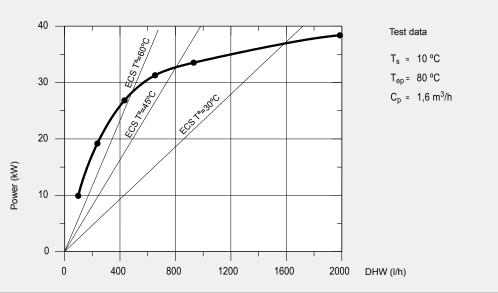
of the primary circuit for DHW production from 10°C to 60°C


Pressure losses between input and output connections of the primary circuit for different flow rates.


lapesa

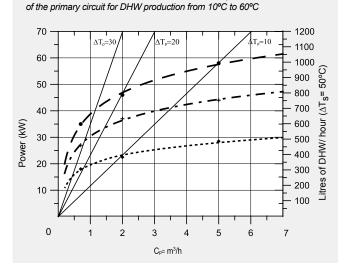
GX6 S/D/DEC 260


Performance GX6 S/D/DEC 260 Peak flow rate at 40°C L/10min 380 Peak flow rate at 45°C L/10min 341 Peak flow rate at 60°C L/10min 236 Peak flow rate at 40°C L/60min 1545 Peak flow rate at 45°C L/60min 1455 Peak flow rate at 60°C L/60min 873 Continuous flow at 40°C L/h 1400 Continuous flow at 45°C L/h 1336 Continuous flow at 60°C L/h 873 Preheating time from de 10 to 60°C min 28 Primary circuit flow rate m³/h 6


Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

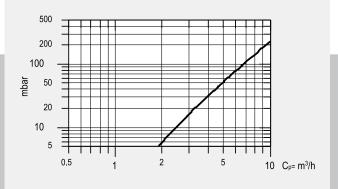
Performance curves for different flow rates and temperatures

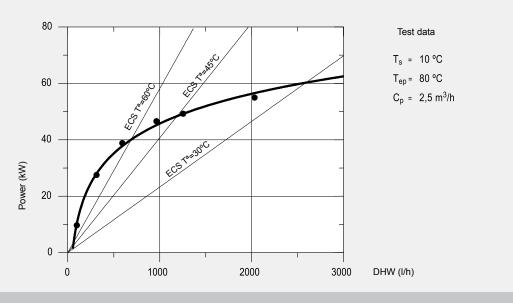
Pressure losses between input and output connections of the primary circuit for different flow rates.


lapesa

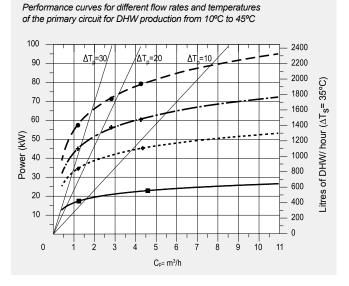
GX6 S/D/DEC 400

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C 80 1800 ٨т 70 1600 ΰ 60 35° 1400 (∆T_S= 50 1200 1000 of DHW/ hour Power (kW) 40 800 30 600 20 400 Litres 10 200 0 9 0 2 à ά 5 8 C_p= m³/h

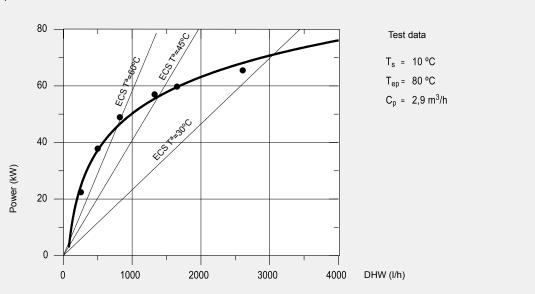

Performance GX6 S/D/DEC 400		
Peak flow rate at 40°C	L/10min	575
Peak flow rate at 45°C	L/10min	515
Peak flow rate at 60°C	L/10min	361
Peak flow rate at 40°C	L/60min	2135
Peak flow rate at 45°C	L/60min	1989
Peak flow rate at 60°C	L/60min	1218
Continuous flow at 40°C	L/h	1875
Continuous flow at 45°C	L/h	1769
Continuous flow at 60°C	L/h	1028
Preheating time from de 10 to 60°C	min	30
Primary circuit flow rate	m³∕h	6

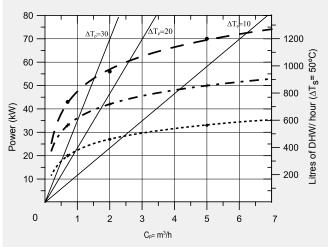

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

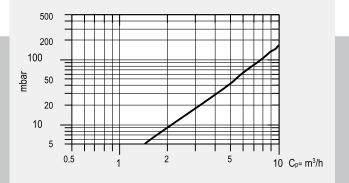
Performance curves for different flow rates and temperatures


Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa


GX6 S/D/DEC 600


Performance GX6 S/D/DEC 600		
Peak flow rate at 40°C	L/10min	900
Peak flow rate at 45°C	L/10min	809
Peak flow rate at 60°C	L/10min	566
Peak flow rate at 40°C	L/60min	2755
Peak flow rate at 45°C	L/60min	2546
Peak flow rate at 60°C	L/60min	1600
Continuous flow at 40°C	L/h	2225
Continuous flow at 45°C	L/h	2085
Continuous flow at 60°C	L/h	1241
Preheating time from de 10 to 60°C	min	34
Primary circuit flow rate	m³/h	6

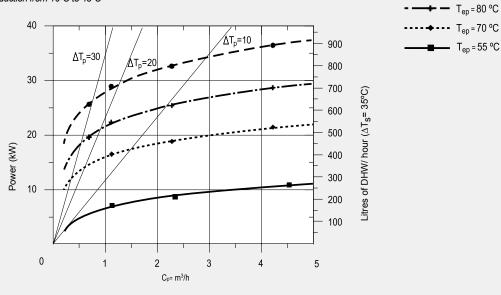

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp =20°C and Δts =30°C

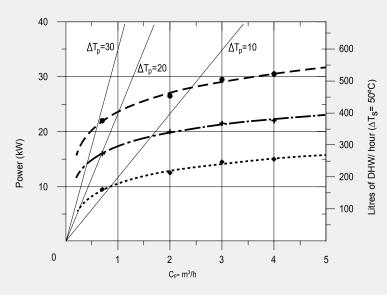
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

lapesa

- T_{ep} = 90 °C


T_{ep} = 80 °C

- T_{ep} = 55 °C


-0

GX6 DE 140

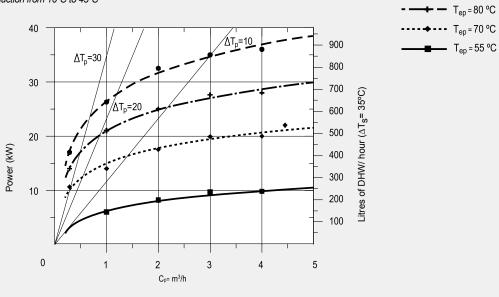
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

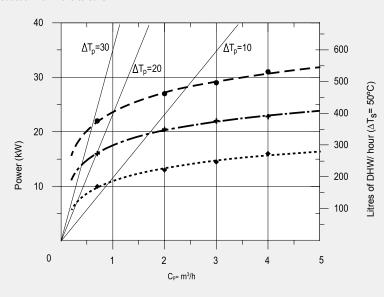
Performances GX6 DE 140		
Peak flow rate at 45°C	L/10min	184
Peak flow rate at 60°C	L/10min	128
Peak flow rate at 45°C	L/60min	872
Peak flow rate at 60°C	L/60min	536
Continuous flow at 45°C	L/h	826
Continuous flow at 60°C	L/h	489
Preheating time from de 10 to 60°C	min	19
Primary circuit flow rate	m³/h	2,6

Note: Performance data assumes a primary flow temperature of 90°C and domestic cold water supply of 10° C

Pressure losses between input and output connections of the primary circuit for different flow rates.

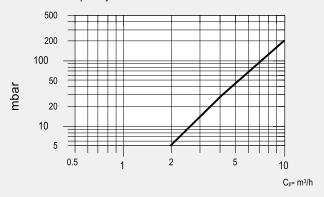


lapesa


T_{ep} = 90 °C

GX6 DE 180

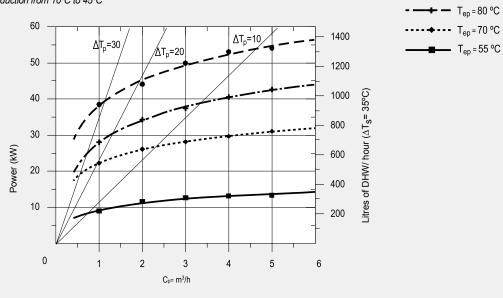
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

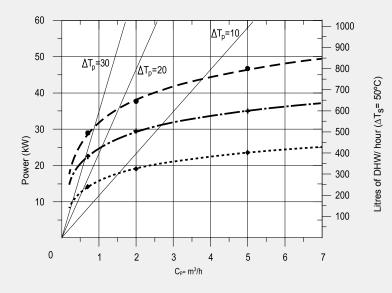
Performance GX6 DE 180		
Peak flow rate at 45°C	L/10min	284
Peak flow rate at 60°C	L/10min	200
Peak flow rate at 45°C	L/60min	1019
Peak flow rate at 60°C	L/60min	630
Continuous flow at 45°C	L/h	882
Continuous flow at 60°C	L/h	517
Preheating time from de 10 to 60°C	min	25
Primary circuit flow rate	m³/h	3,5

Note: Performance data assumes a primary flow temperature of 90°C and domestic cold water supply of 10°C

Pressure losses between input and output connections of the primary circuit for different flow rates.

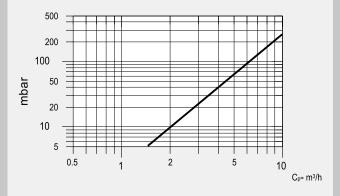


lapesa


T_{ep} = 90 °C

GX6 DE 215

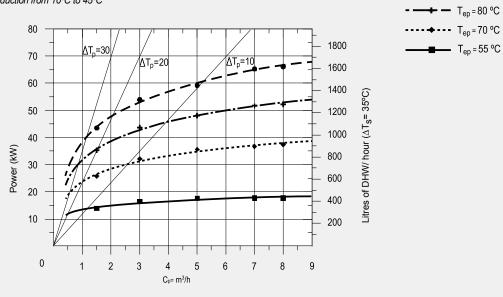
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

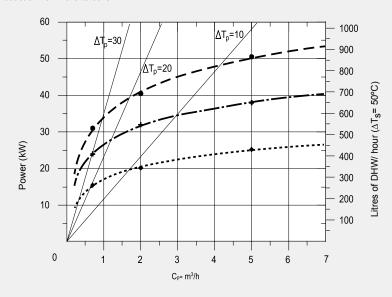
Peak flow rate at 45°C	L/10min	436
Peak flow rate at 60°C	L/10min	263
Peak flow rate at 45°C	L/60min	1513
Peak flow rate at 60°C	L/60min	960
Continuous flow at 45°C	L/h	1293
Continuous flow at 60°C	L/h	773
Preheating time from de 10 to 60°C	min	22
Primary circuit flow rate	m³/h	4,2

Note: Performance data assumes a primary flow temperature of 90°C and domestic cold water supply of 10° C

Pressure losses between input and output connections of the primary circuit for different flow rates.

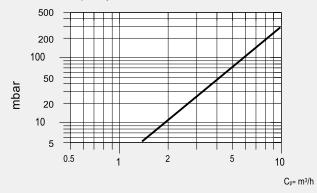


lapesa


T_{ep} = 90 °C

GX6 DE 260

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

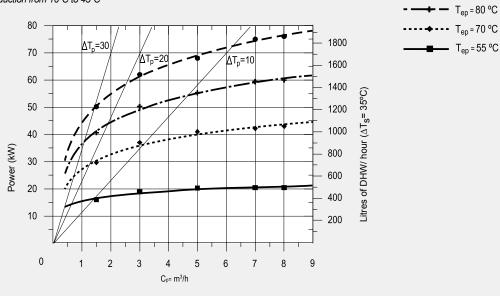

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

Performance GX6 DE 260		
Peak flow rate at 45°C	L/10min	462
Peak flow rate at 60°C	L/10min	278
Peak flow rate at 45°C	L/60min	1719
Peak flow rate at 60°C	L/60min	1012
Continuous flow at 45°C	L/h	1508
Continuous flow at 60°C	L/h	881
Preheating time from de 10 to 60°C	min	22
Primary circuit flow rate	m³∕h	5,5

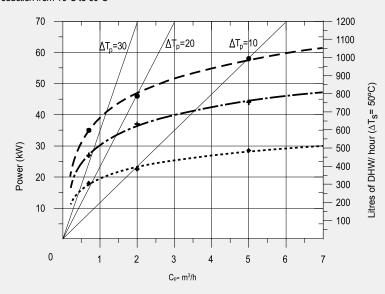
Note: Performance data assumes a primary flow temperature of 90°C and domestic cold water supply of 10°C

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

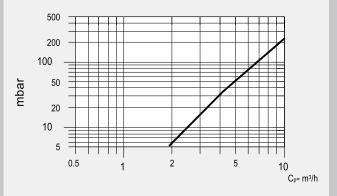

T_{ep} = 90 °C

T_{ep} = 80 °C


- T_{ep} = 55 °C

GX6 DE 400

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

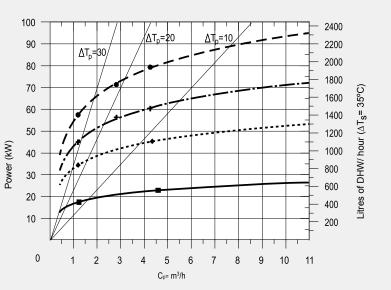
Performance GX6 DE 400		
Peak flow rate at 45°C	L/10min	515
Peak flow rate at 60°C	L/10min	361
Peak flow rate at 45°C	L/60min	2009
Peak flow rate at 60°C	L/60min	1229
Continuous flow at 45°C	L/h	1793
Continuous flow at 60°C	L/h	1041
Preheating time from de 10 to 60°C	min	29
Primary circuit flow rate	m³/h	6,4

Note: Performance data assumes a primary flow temperature of 90°C and domestic cold water supply of 10° C

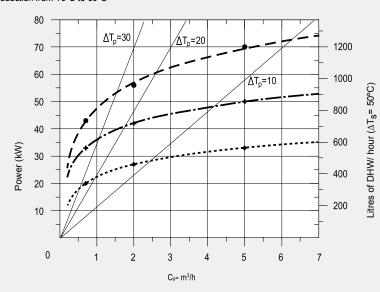
Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

T_{ep} = 90 °C

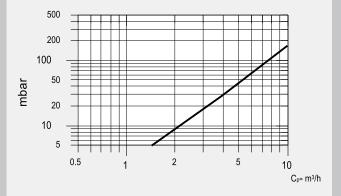

T_{ep} = 80 °C

--- T_{ep} = 70 °C


- T_{ep} = 55 °C

GX6 DE 600

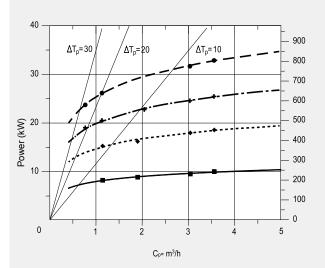
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

Performance GX6 DE 600		
Peak flow rate at 45°C	L/10min	809
Peak flow rate at 60°C	L/10min	566
Peak flow rate at 45°C	L/60min	2609
Peak flow rate at 60°C	L/60min	1635
Continuous flow at 45°C	L/h	2161
Continuous flow at 60°C	L/h	1283
Preheating time from de 10 to 60°C	min	32
Primary circuit flow rate	m³∕h	7,2

Note: Performance data assumes a primary flow temperature of 90°C and domestic cold water supply of 10° C

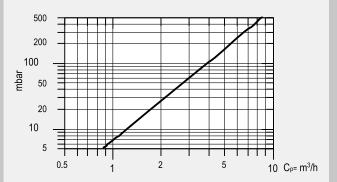
Pressure losses between input and output connections of the primary circuit for different flow rates.



GX6 TS 180/240

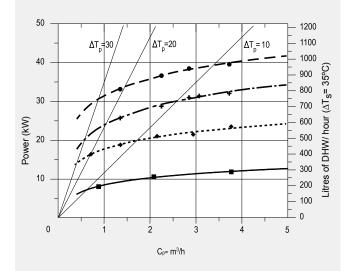
lapesa

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

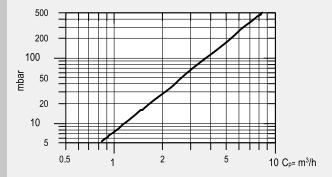


Performance GX6 TS 180		
Peak flow rate at 40°C	L/10min	238
Peak flow rate at 45°C	L/10min	214
Peak flow rate at 60°C	L/10min	150
Peak flow rate at 40°C	L/60min	994
Peak flow rate at 45°C	L/60min	927
Peak flow rate at 60°C	L/60min	570
Continuous flow at 40°C	L/h	908
Continuous flow at 45°C	L/h	855
Continuous flow at 60°C	L/h	504
Preheating time from de 10 to 60°C	min	26
Primary circuit flow rate	m³/h	5

Note: Performance data assumes a primary flow temperature of 85° C and domestic cold water supply of 10° C

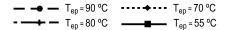

Pressure losses between input and output connections

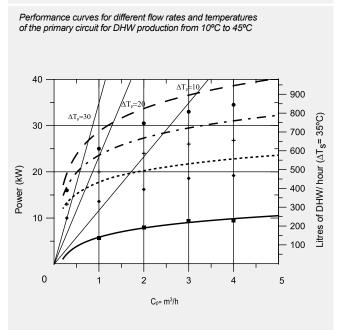
of the primary circuit for different flow rates.


GX6 TS 240

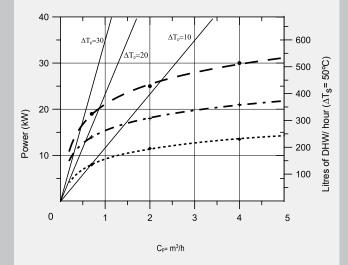
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45° C

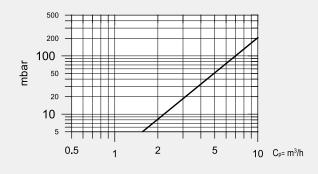
Performance GX6 TS 240		
Peak flow rate at 40°C	L/10min	303
Peak flow rate at 45°C	L/10min	273
Peak flow rate at 60°C	L/10min	191
Peak flow rate at 40°C	L/60min	1238
Peak flow rate at 45°C	L/60min	1154
Peak flow rate at 60°C	L/60min	709
Continuous flow at 40°C	L/h	1122
Continuous flow at 45°C	L/h	1057
Continuous flow at 60°C	L/h	622
Preheating time from de 10 to 60°C	min	28
Primary circuit flow rate	m³/h	6

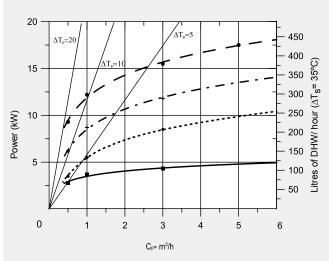

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10° C

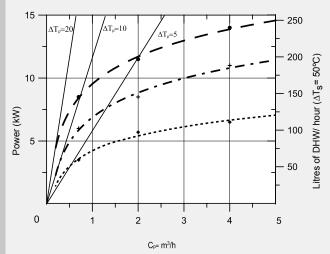

Double wall

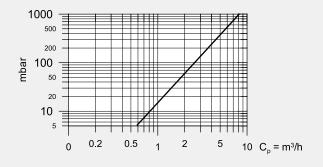
GX6 P 300




Coil

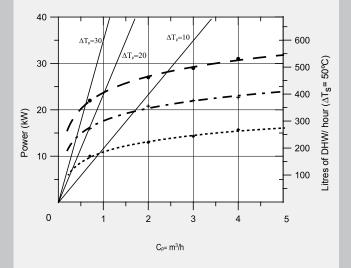

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

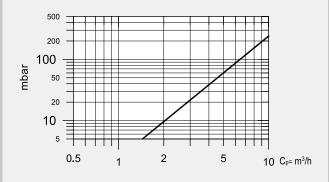

Pressure losses between the input and output connections of the primary circuit for different flow rates

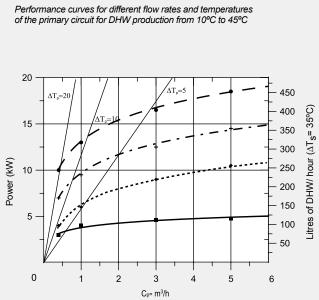


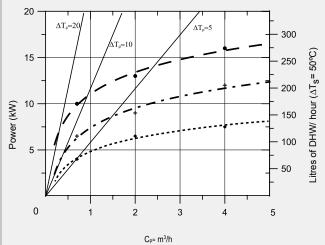
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

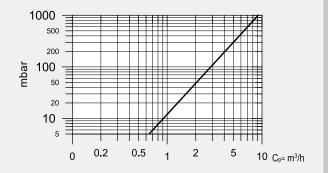
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C




GX6 P 400

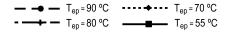

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C


Pressure losses between the input and output connections of the primary circuit for different flow rates

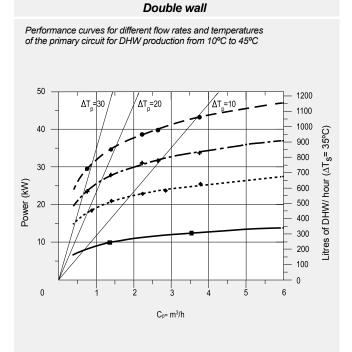

- T_{ep} = 80 °C **–** T_{ep} = 55 °C -

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

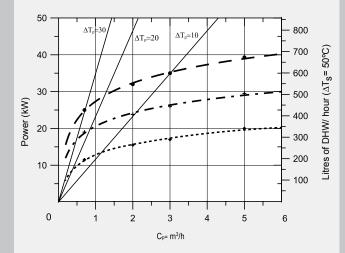
Pressure losses between the input and output connections of the primary circuit for different flow rates

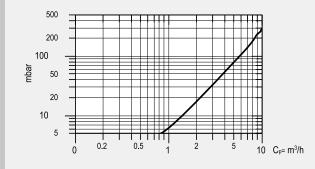

T_{ep} = 90 °C ••••• T_{ep} = 70 °C

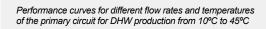
lapesa

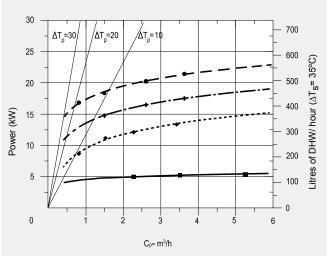

Coil

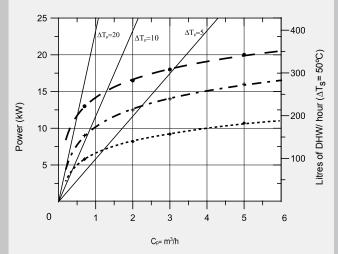
GX6 P 600

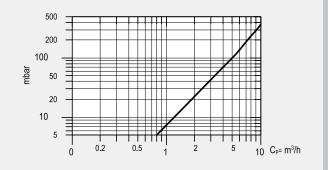

lapesa

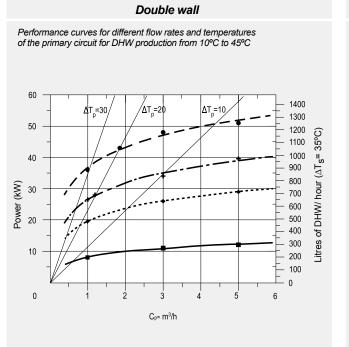

Coil

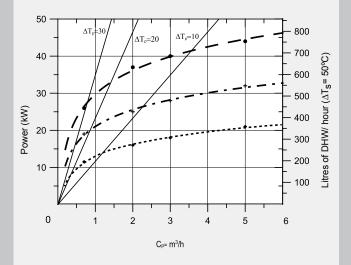



Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10° C to 60° C

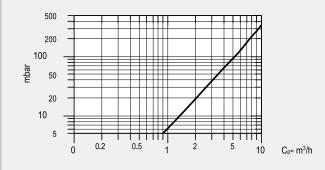

Pressure losses between the input and output connections of the primary circuit for different flow rates

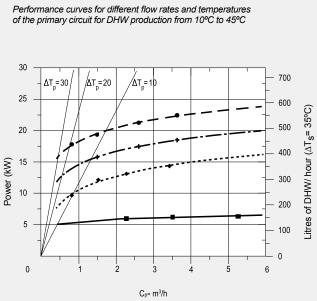


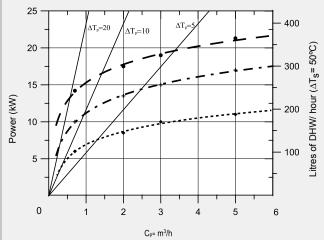

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

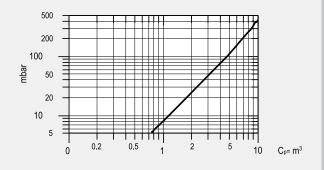


GX6 P 800

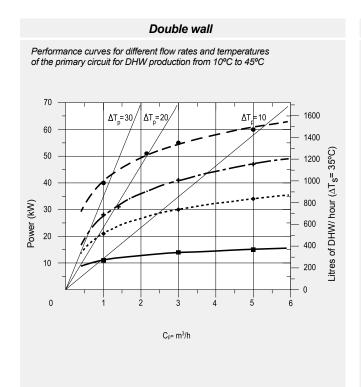

lapesa

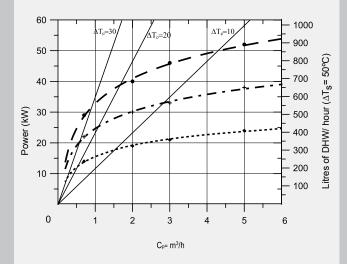

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10° C to 60° C


Pressure losses between the input and output connections of the primary circuit for different flow rates

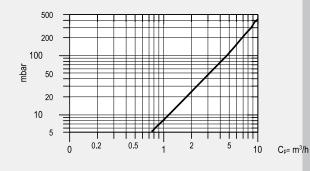


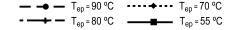
Coil


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

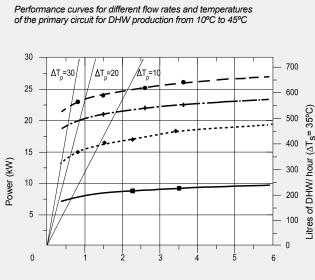


GX6 P 1000

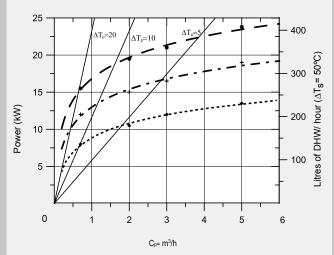

lapesa

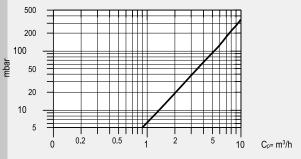


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C



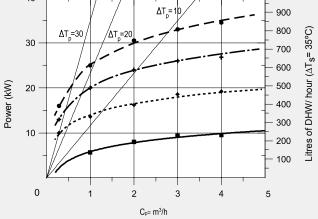
Pressure losses between the input and output connections of the primary circuit for different flow rates



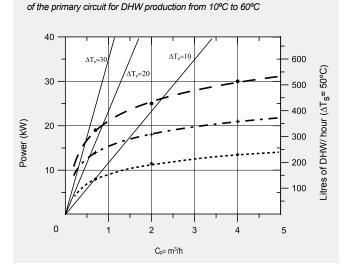

Coil

C_p= m³/h

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

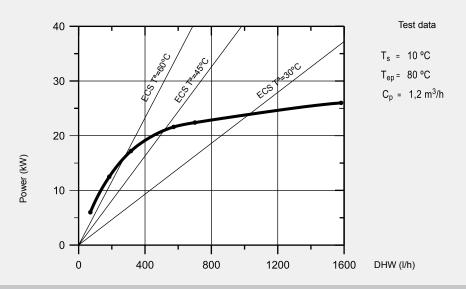


lapesa


GX6 PAC300

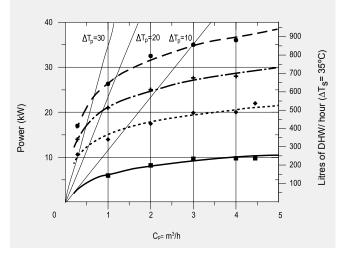
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

Performance GX6 PAC 300		
Peak flow rate at 40°C	L/10min	250
Peak flow rate at 45°C	L/10min	226
Peak flow rate at 60°C	L/10min	158
Peak flow rate at 40°C	L/60min	1050
Peak flow rate at 45°C	L/60min	975
Peak flow rate at 60°C	L/60min	605
Continuous flow at 40°C	L/h	960
Continuous flow at 45°C	L/h	899
Continuous flow at 60°C	L/h	605
Preheating time from de 10 to 60°C	min	24
Primary circuit flow rate	m³∕h	5

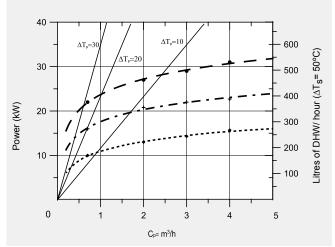

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

Performance curves for different flow rates and temperatures

Pressure losses between input and output connections of the primary circuit for different flow rates.

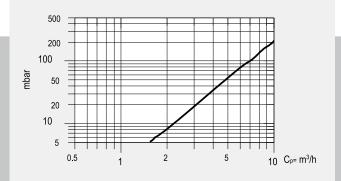


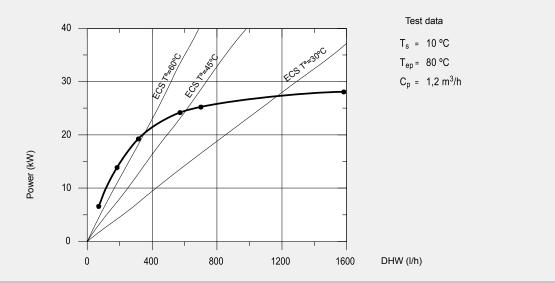
lapesa


GX6 PAC 400

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

Performance GX6 PAC 400		
Peak flow rate at 40°C	L/10min	315
Peak flow rate at 45°C	L/10min	284
Peak flow rate at 60°C	L/10min	200
Peak flow rate at 40°C	L/60min	1165
Peak flow rate at 45°C	L/60min	1073
Peak flow rate at 60°C	L/60min	656
Continuous flow at 40°C	L/h	1020
Continuous flow at 45°C	L/h	947
Continuous flow at 60°C	L/h	548
Preheating time from de 10 to 60°C	min	29
Primary circuit flow rate	m³/h	5

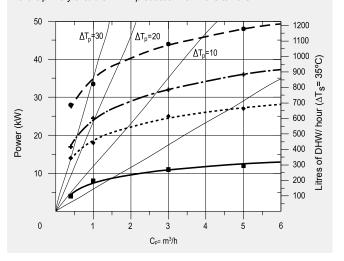

Note: Performance data assumes a primary flow temperature of 85° C and domestic cold water supply of 10° C



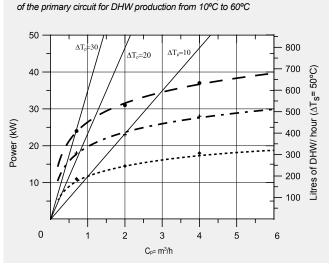
Performance curves for different flow rates and temperatures

of the primary circuit for DHW production from 10°C to 60°C

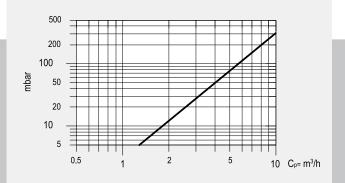
Pressure losses between input and output connections of the primary circuit for different flow rates.

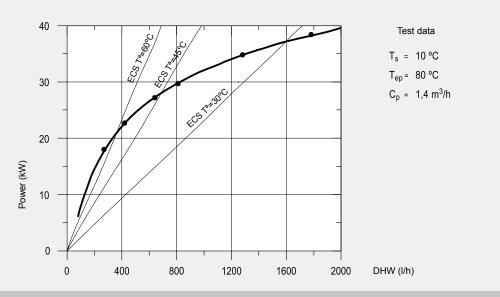


lapesa


GX6 PAC 600

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

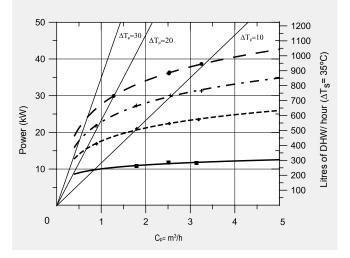

Performance GX6 PAC 600		
Peak flow rate at 40°C	L/10min	600
Peak flow rate at 45°C	L/10min	541
Peak flow rate at 60°C	L/10min	378
Peak flow rate at 40°C	L/60min	1650
Peak flow rate at 45°C	L/60min	1522
Peak flow rate at 60°C	L/60min	929
Continuous flow at 40°C	L/h	1260
Continuous flow at 45°C	L/h	1177
Continuous flow at 60°C	L/h	661
Preheating time from de 10 to 60°C	min	32
Primary circuit flow rate	m³∕h	5


Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

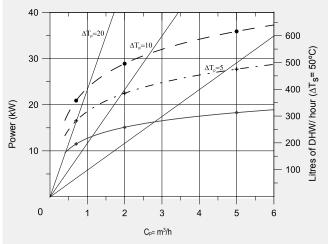
Performance curves for different flow rates and temperatures

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

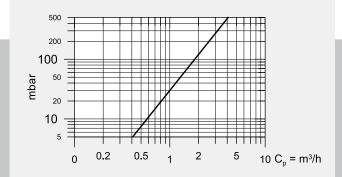

– T_{ep} = 55 °C

••••• T_{ep} = 70 °C

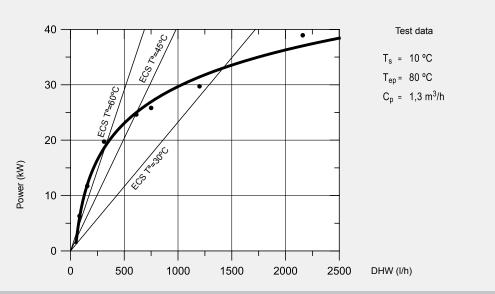

-

GX-150-M1

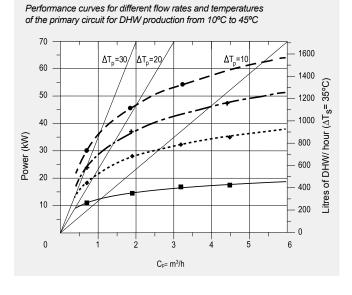
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10° C to 45° C



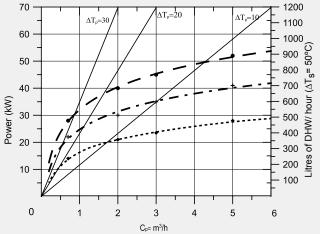
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C


T_{ep}=90 °C

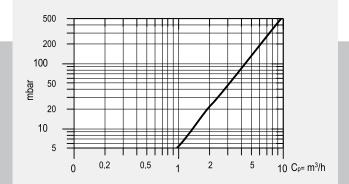
Pressure losses between input and output connections of the primary circuit for different flow rates.


Performance GX-150-M1		
Peak flow rate at 40°C	L/10min	315
Peak flow rate at 45°C	L/10min	284
Peak flow rate at 60°C	L/10min	200
Peak flow rate at 40°C	L/60min	1265
Peak flow rate at 45°C	L/60min	1158
Peak flow rate at 60°C	L/60min	715
Continuous flow at 40°C	L/h	1140
Continuous flow at 45°C	L/h	1049
Continuous flow at 60°C	L/h	618
Preheating time from de 10 to 60°C	min	19
Primary circuit flow rate	m³/h	5

Note: Performance data assumes a primary flow temperature of 85° C and domestic cold water supply of 10° C

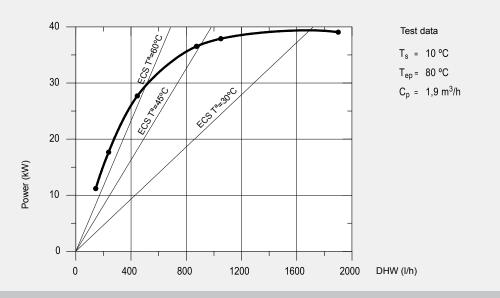

lapesa

GX-200-M1

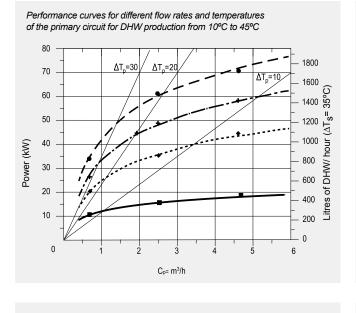


	1 _{ep} =90 °C		1 _{ep} = 70 °C
+	T _{ep} = 80 °C	_	T _{ep} = 55 °C

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

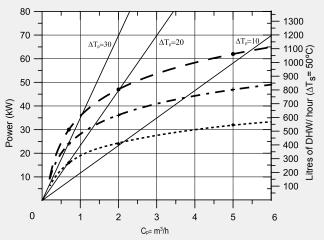


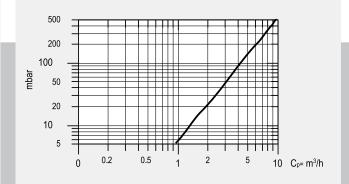
Pressure losses between input and output connections of the primary circuit for different flow rates.

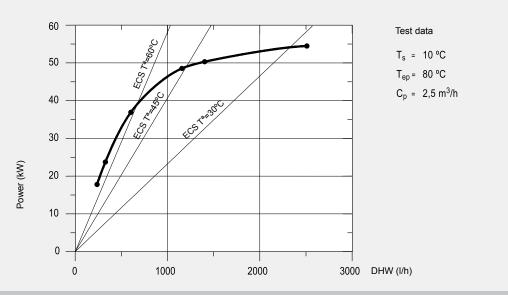

Performance GX-200-M1		
Peak flow rate at 40°C	L/10min	425
Peak flow rate at 45°C	L/10min	383
Peak flow rate at 60°C	L/10min	268
Peak flow rate at 40°C	L/60min	1840
Peak flow rate at 45°C	L/60min	1698
Peak flow rate at 60°C	L/60min	1039
Continuous flow at 40°C	L/h	1700
Continuous flow at 45°C	L/h	1578
Continuous flow at 60°C	L/h	926
Preheating time from de 10 to 60°C	min	20
Primary circuit flow rate	m³∕h	6

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

lapesa


GX-300-M1


Performance GX-300-M1/M2		
Peak flow rate at 40°C	L/10min	600
Peak flow rate at 45°C	L/10min	541
Peak flow rate at 60°C	L/10min	378
Peak flow rate at 40°C	L/60min	2310
Peak flow rate at 45°C	L/60min	2113
Peak flow rate at 60°C	L/60min	1310
Continuous flow at 40°C	L/h	2050
Continuous flow at 45°C	L/h	1887
Continuous flow at 60°C	L/h	119
Preheating time from de 10 to 60°C	min	24
Primary circuit flow rate	m³∕h	6


Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C $\,$

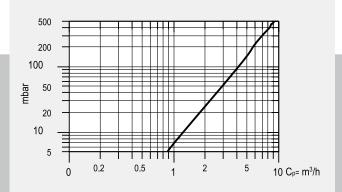
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10° C to 60° C

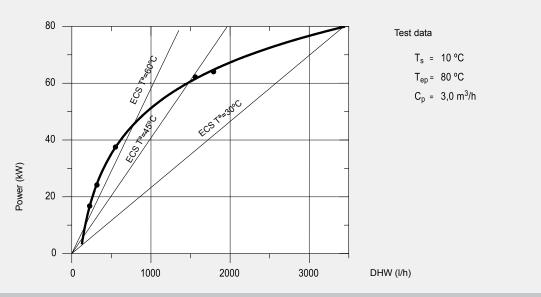
Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

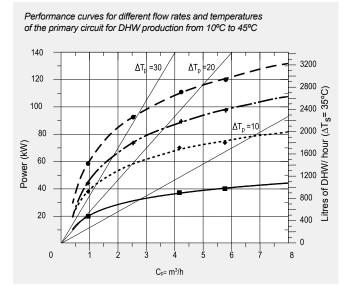
GX-500-M1

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C 100 2400 =20 30 ٨T 90 2200 2000 35°C) 80 1800 70 (∆T_S= p=10 1600 60 1400 hour Power (kW) 50 1200 DHW/ h 1000 40 800 30 Litres of 600 20 400 10 200 0 0 3 5 6 C_p= m³/h

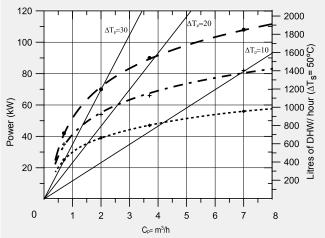

Performance		GX-400-M2	GX-500-M1/M2
Peak flow rate at 40°C	L/10min	823	1007
Peak flow rate at 45°C	L/10min	705	908
Peak flow rate at 60°C	L/10min	494	635
Peak flow rate at 40°C	L/60min	2865	3050
Peak flow rate at 45°C	L/60min	2410	2810
Peak flow rate at 60°C	L/60min	1475	1752
Continuous flow at 40°C	L/h	2450	2450
Continuous flow at 45°C	L/h	2050	2282
Continuous flow at 60°C	L/h	1175	1340
Preheating time from de 10 to 60°C	min	22	27
Primary circuit flow rate	m³/h	6	6

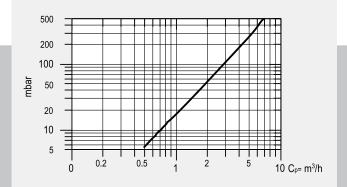

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C $\,$

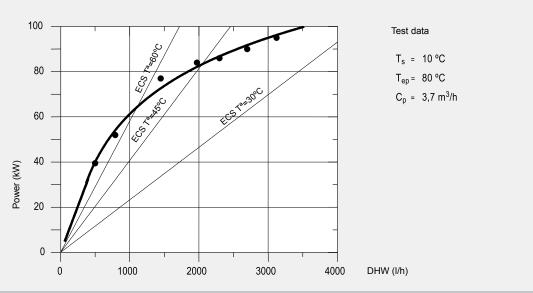
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10° C to 60° C


Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

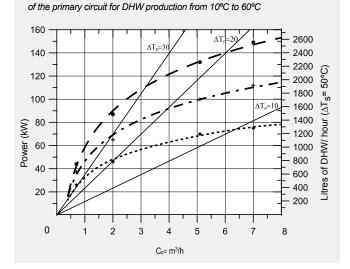

GX-800-M1


Performance GX-800-M1/M2		
Peak flow rate at 40°C	L/10min	1690
Peak flow rate at 45°C	L/10min	1523
Peak flow rate at 60°C	L/10min	1066
Peak flow rate at 40°C	L/60min	4610
Peak flow rate at 45°C	L/60min	4226
Peak flow rate at 60°C	L/60min	2668
Continuous flow at 40°C	L/h	3500
Continuous flow at 45°C	L/h	3244
Continuous flow at 60°C	L/h	1922
Preheating time from de 10 to 60°C	min	28
Primary circuit flow rate	m³∕h	8


Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

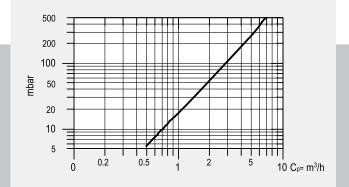
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

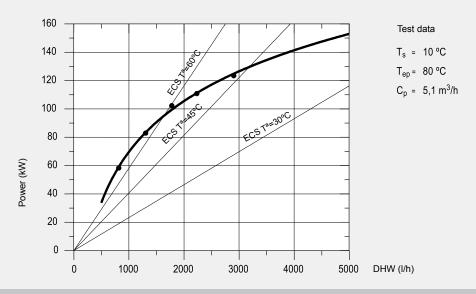
Pressure losses between input and output connections of the primary circuit for different flow rates.


lapesa

GX-1000-M1

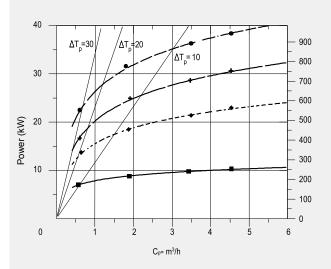
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C 200 4500 ∆T_= 30 180 4000 160 ΰ ΔT = 20. 35° 3500 140 (∆T_S= 3000 120 2500 100 DHW/ hour Power (kW) ∆T_= 10 2000 80 1500 60 Litres of 1000 40 500 20 0 0 8 Cp= m³/h


Performance GX-1000-M1/M2		
Peak flow rate at 40°C	L/10min	1995
Peak flow rate at 45°C	L/10min	1796
Peak flow rate at 60°C	L/10min	1255
Peak flow rate at 40°C	L/60min	5950
Peak flow rate at 45°C	L/60min	5510
Peak flow rate at 60°C	L/60min	3453
Continuous flow at 40°C	L/h	4750
Continuous flow at 45°C	L/h	4457
Continuous flow at 60°C	L/h	2638
Preheating time from de 10 to 60°C	min	31
Primary circuit flow rate	m³∕h	8


Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

Performance curves for different flow rates and temperatures

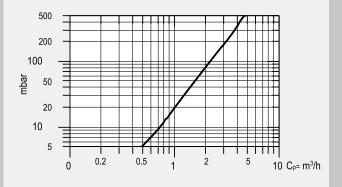
Pressure losses between input and output connections of the primary circuit for different flow rates.



GX-150/200-TSM

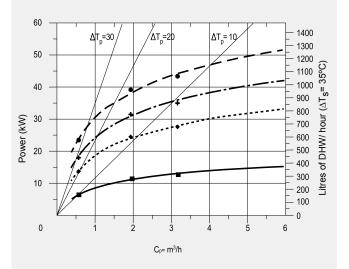
lapesa

GX-150-TSM

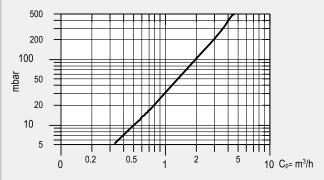

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

Performance GX-150-TSM		
Peak flow rate at 40°C	L/10min	320
Peak flow rate at 45°C	L/10min	289
Peak flow rate at 60°C	L/10min	205
Peak flow rate at 40°C	L/60min	1185
Peak flow rate at 45°C	L/60min	1093
Peak flow rate at 60°C	L/60min	679
Continuous flow at 40°C	L/h	1040
Continuous flow at 45°C	L/h	965
Continuous flow at 60°C	L/h	569
Preheating time from de 10 to 60°C	min	20
Primary circuit flow rate	m³/h	5

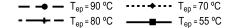
Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C


Pressure losses between input and output connections of the primary circuit for different flow rates.

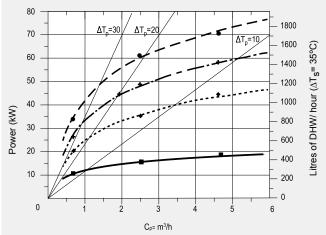
— — Т _{ер} =90 °С	••••• T _{ep} =70 °C
T _{ep} =80 °C	Τ _{ep} = 55 °C

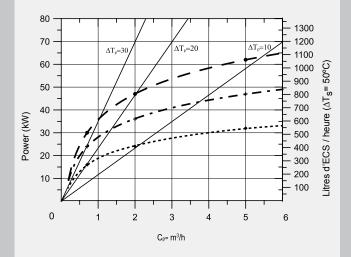

GX-200-TSM

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45° C

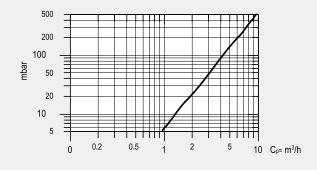

Performance GX-200-TSM		
Peak flow rate at 40°C	L/10min	410
Peak flow rate at 45°C	L/10min	368
Peak flow rate at 60°C	L/10min	257
Peak flow rate at 40°C	L/60min	1510
Peak flow rate at 45°C	L/60min	1427
Peak flow rate at 60°C	L/60min	881
Continuous flow at 40°C	L/h	1325
Continuous flow at 45°C	L/h	1271
Continuous flow at 60°C	L/h	749
Preheating time from de 10 to 60°C	min	23
Primary circuit flow rate	m³/h	6

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

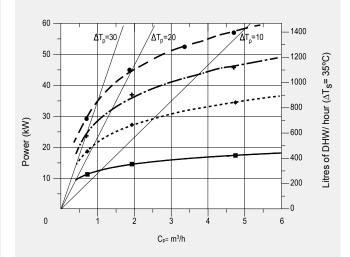

GX-300-M2



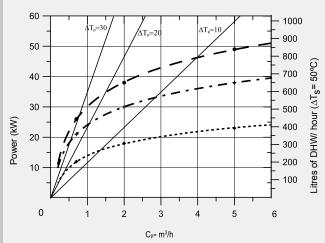
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C

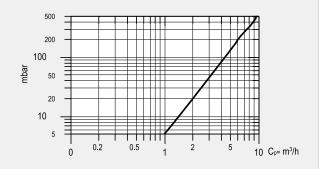

Lower coil

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C

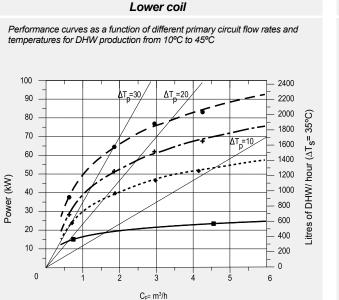


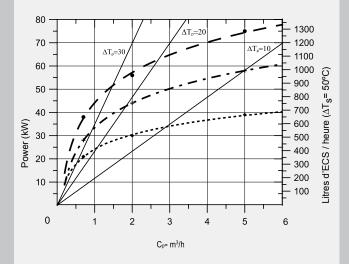
Pressure losses between the input and output connections of the primary circuit for different flow rates.



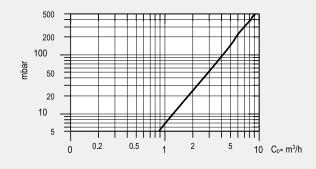

Upper coil

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C

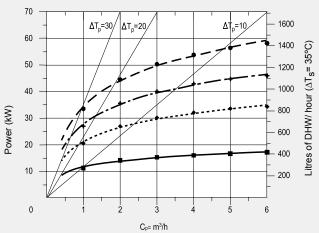

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60° C



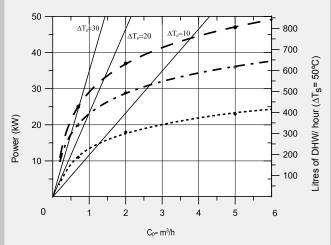
GX-400-M2

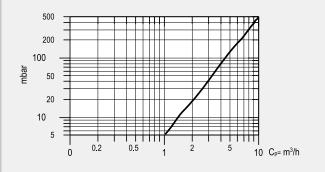

lapesa

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C



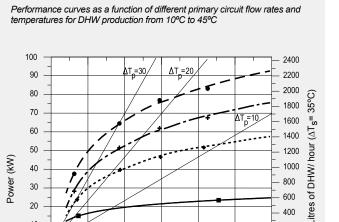
Pressure losses between the input and output connections of the primary circuit for different flow rates.




Upper coil

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 45° C

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60° C


Lower coil

GX-500-M2

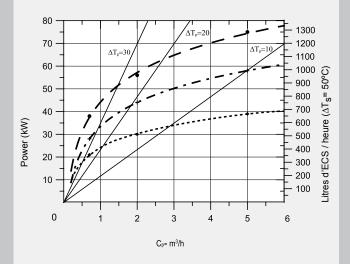
10

0

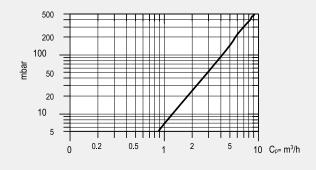
lapesa

400

200 0

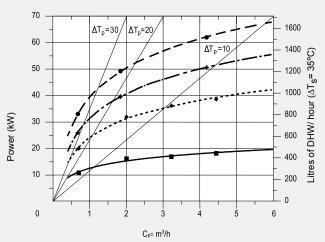

6

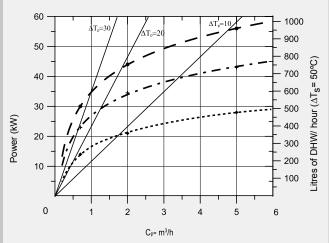
5


Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C

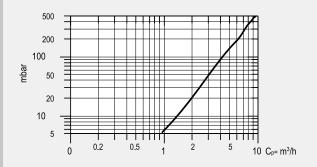
3

C_p= m³/h

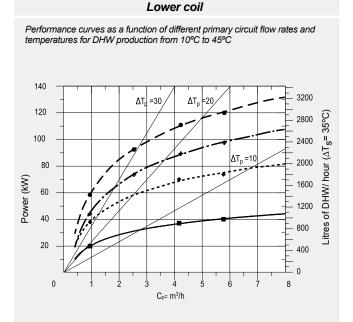

Pressure losses between the input and output connections of the primary circuit for different flow rates.


 $T_{ep} = 90 \text{ °C}$ $---- T_{ep} = 70 \text{ °C}$ - T_{ep} = 80 °C T_{ep} = 55 °C

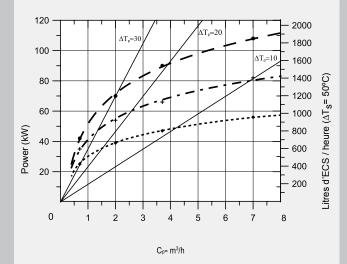
Upper coil


Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C

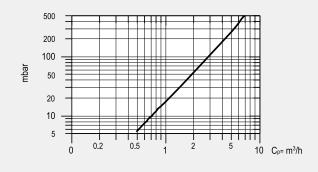
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60°C



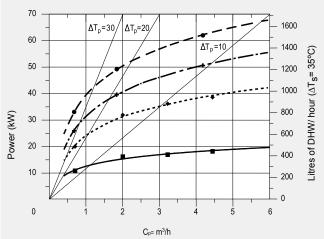
Pressure losses between the input and output connections of the primary circuit for different flow rates.



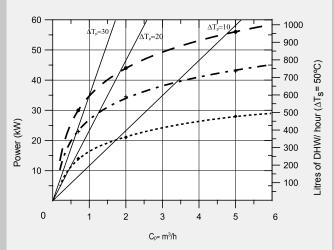
GX-800-M2



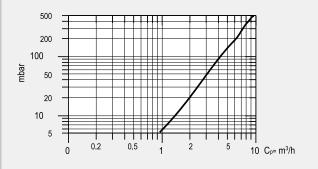
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C

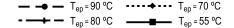


Pressure losses between the input and output connections of the primary circuit for different flow rates.

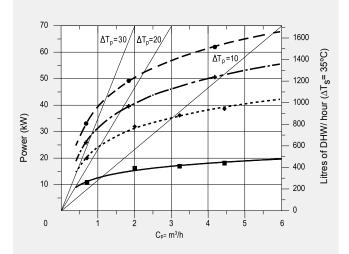


Upper coil

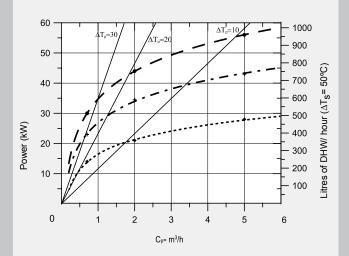

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 45° C


Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60° C

Pressure losses between the input and output connections of the primary circuit for different flow rates.



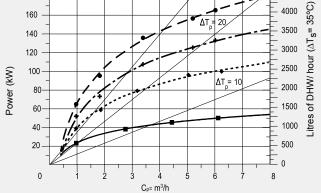
GX-1000-M2



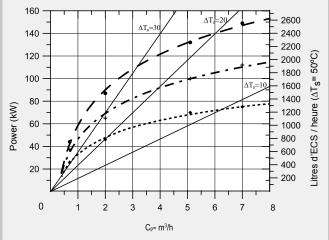
Upper coil


Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C

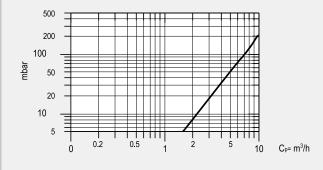
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60° C



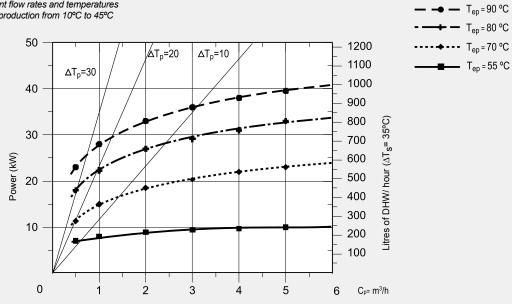
Pressure losses between the input and output connections of the primary circuit for different flow rates.



Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C $\frac{200}{180} + \frac{\Delta T = 30}{180} + \frac{\Delta$

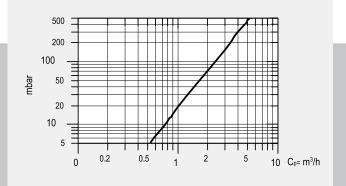

Lower coil

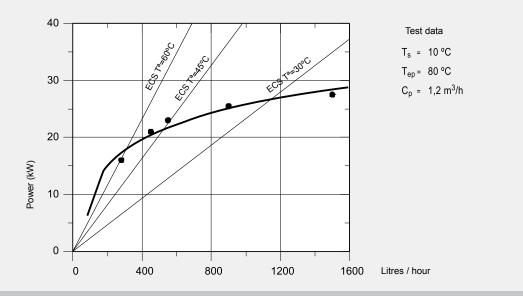
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C


Pressure losses between the input and output connections of the primary circuit for different flow rates.

lapesa

CV-110-M1


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

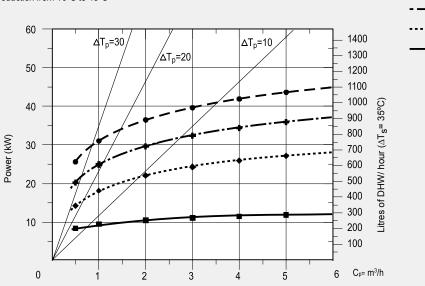

Performance CV-110-M1		
Peak flow rate at 40°C	L/10min	170
Peak flow rate at 45°C	L/10min	152
Peak flow rate at 60°C	L/10min	105
Peak flow rate at 40°C	L/60min	1060
Peak flow rate at 45°C	L/60min	964
Peak flow rate at 60°C	L/60min	584
Continuous flow at 40°C	L/h	1070
Continuous flow at 45°C	L/h	974
Continuous flow at 60°C	L/h	575
Preheating time from de 10 to 60°C	min	17
Primary circuit flow rate	m³/h	5

Note: Performance data assumes a primary flow temperature of 85° C and domestic cold water supply of 10° C

Pressure losses between input and output connections of the primary circuit for different flow rates.

Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp=20°C and Δts=30°C

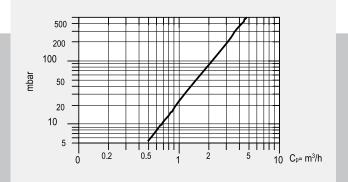
lapesa

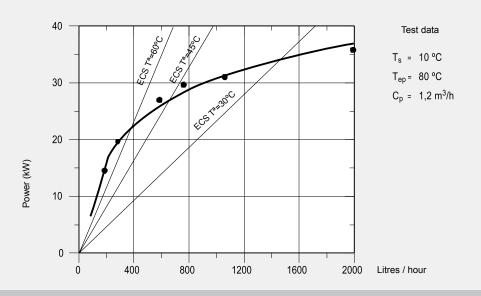

- $T_{ep} = 90 °C$ - $T_{ep} = 80 °C$ - $T_{ep} = 70 °C$

– T_{ep} = 55 °C

•

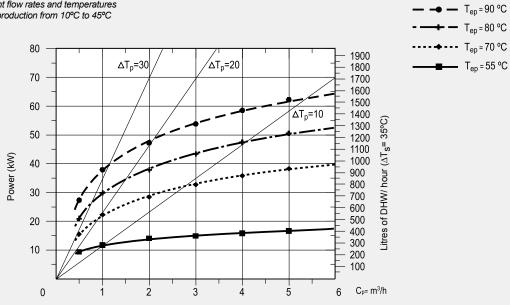
CV-150-M1


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C


Performance CV-150-M1		
Peak flow rate at 40°C	L/10min	230
Peak flow rate at 45°C	L/10min	210
Peak flow rate at 60°C	L/10min	147
Peak flow rate at 40°C	L/60min	1160
Peak flow rate at 45°C	L/60min	1105
Peak flow rate at 60°C	L/60min	675
Continuous flow at 40°C	L/h	1115
Continuous flow at 45°C	L/h	1074
Continuous flow at 60°C	L/h	634
Preheating time from de 10 to 60°C	min	20
Primary circuit flow rate	m³∕h	5

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

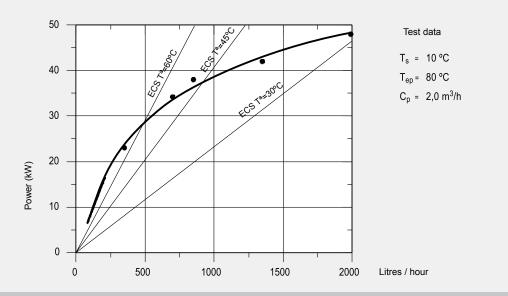
Pressure losses between input and output connections of the primary circuit for different flow rates.


Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp=20°C and Δts=30°C

lapesa

CV-200-M1

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C


Pressure losses between input and output connections
of the primary circuit for different flow rates.

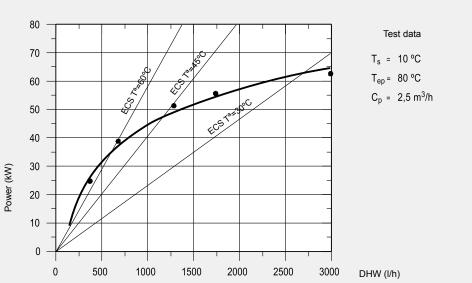
Performance CV-200-M1		
Peak flow rate at 40°C	L/10min	435
Peak flow rate at 45°C	L/10min	389
Peak flow rate at 60°C	L/10min	273
Peak flow rate at 40°C	L/60min	1810
Peak flow rate at 45°C	L/60min	1654
Peak flow rate at 60°C	L/60min	1024
Continuous flow at 40°C	L/h	1650
Continuous flow at 45°C	L/h	1519
Continuous flow at 60°C	L/h	901
Preheating time from de 10 to 60°C	min	25
Primary circuit flow rate	m³/h	5

Note: Performance data assumes a primary flow temperature of 85° C and domestic cold water supply of 10° C

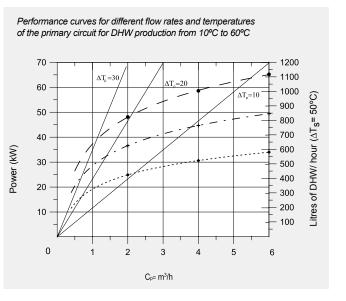
500 200 100 nbar 50 20 10 5 Ħ 0.2 0.5 2 5 0 C_p= m³/h 10

Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp=20°C and Δts=30°C

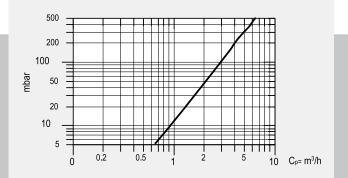
lapesa


CV-300-M1

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C 80 1900 1800 1700 70 $\Delta T_p = 30$ ∆T_p=20 ∆T_n=10 1600 1500 Litres of DHW/ hour (ΔT_{S} = 35°C) 60 1400 1300 50 1200 1100 1000 900 800 700 600 Power (kW) 40 30 500 400 300 200 20 10 100 0 5 6 C_p= m³/h


Performance CV-300-M1/M2		
Peak flow rate at 40°C	L/10min	605
Peak flow rate at 45°C	L/10min	546
Peak flow rate at 60°C	L/10min	383
Peak flow rate at 40°C	L/60min	2330
Peak flow rate at 45°C	L/60min	2125
Peak flow rate at 60°C	L/60min	1320
Continuous flow at 40°C	L/h	2070
Continuous flow at 45°C	L/h	1320
Continuous flow at 60°C	L/h	1124
Preheating time from de 10 to 60°C	min	27
Primary circuit flow rate	m³/h	6

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C


Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp =20°C and Δts =30°C

— — — T _{ep} =90 °C	••••• T _{ep} = 70 °C
• — — T _{ep} = 80 °C	——— T _{ep} = 55 °C

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

CV-500-M1

0

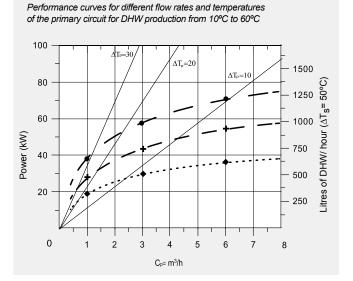
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C 90 2200 $\Delta T_p = 30$ **4**Τ_ρ=20, 2000 80 1800 ΰ 70 1600 35° 60 -(∆T_S= 1400 $\Delta T_p = 10$ 50 1200 hour Power (kW) 1000 40 Litres of DHW/ 800 30 600 20 400 10 200

3

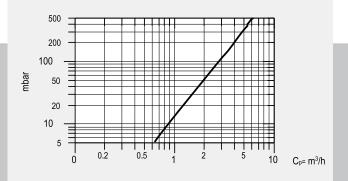
C_p= m³/h

4

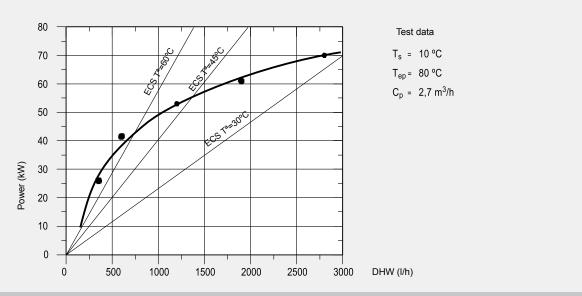
2


1

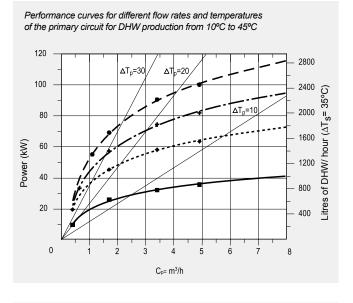
Performances		CV-400-M2	CV-500-M1/M2
Peak flow rate at 40°C	L/10min	835	1085
Peak flow rate at 45°C	L/10min	751	977
Peak flow rate at 60°C	L/10min	525	683
Peak flow rate at 40°C	L/60min	2505	2960
Peak flow rate at 45°C	L/60min	2282	2697
Peak flow rate at 60°C	L/60min	1432	1702
Continuous flow at 40°C	L/h	2005	2250
Continuous flow at 45°C	L/h	1837	2065
Continuous flow at 60°C	L/h	1088	1223
Preheating time from de 10 to 60°C	min	30	32
Primary circuit flow rate	m³/h	6	6


5

6

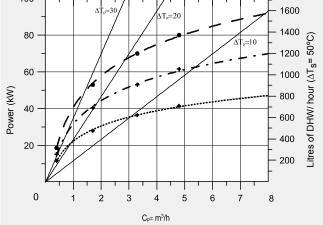

Note: Performance data assumes a primary flow temperature of 85° C and domestic cold water supply of 10° C

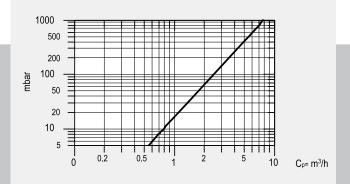
Pressure losses between input and output connections of the primary circuit for different flow rates.



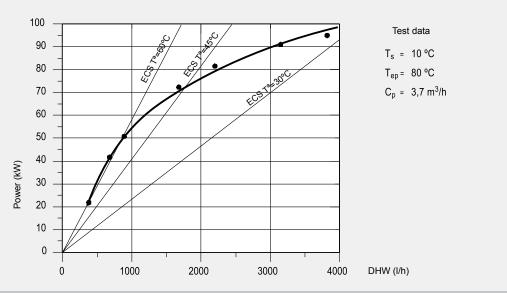
Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for Δ Tp=20°C and Δ ts=30°C

lapesa

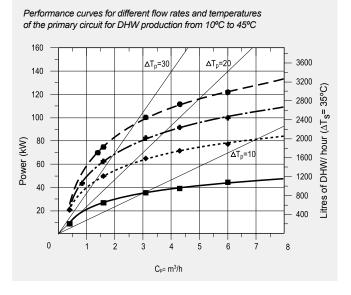

CV-800-M1


Performance CV-800-M1/M2		
Peak flow rate at 40°C	L/10min	1625
Peak flow rate at 45°C	L/10min	1465
Peak flow rate at 60°C	L/10min	1024
Peak flow rate at 40°C	L/60min	4105
Peak flow rate at 45°C	L/60min	3839
Peak flow rate at 60°C	L/60min	2343
Continuous flow at 40°C	L/h	2975
Continuous flow at 45°C	L/h	2849
Continuous flow at 60°C	L/h	1583
Preheating time from de 10 to 60°C	min	36
Primary circuit flow rate	m³∕h	8

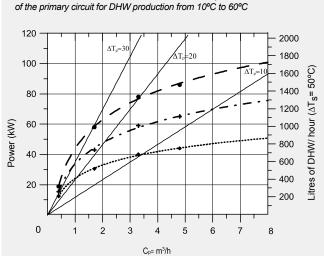
Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

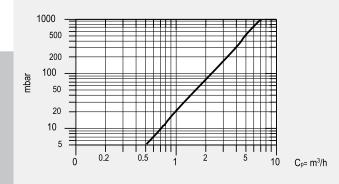
Pressure losses between input and output connections of the primary circuit for different flow rates.



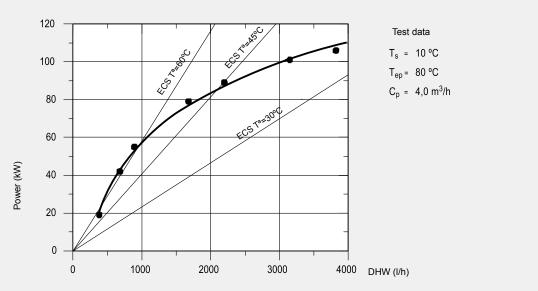
Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for Δ Tp=20°C and Δ ts=30°C


lapesa

CV-1000-M1


Performance CV-1000-M1/M2		
Peak flow rate at 40°C	L/10min	1950
Peak flow rate at 45°C	L/10min	1754
Peak flow rate at 60°C	L/10min	1229
Peak flow rate at 40°C	L/60min	4935
Peak flow rate at 45°C	L/60min	4487
Peak flow rate at 60°C	L/60min	2681
Continuous flow at 40°C	L/h	3580
Continuous flow at 45°C	L/h	3281
Continuous flow at 60°C	L/h	1743
Preheating time from de 10 to 60°C	min	40
Primary circuit flow rate	m³∕h	8

Note: Performance data assumes a primary flow temperature of 85° C and domestic cold water supply of 10° C

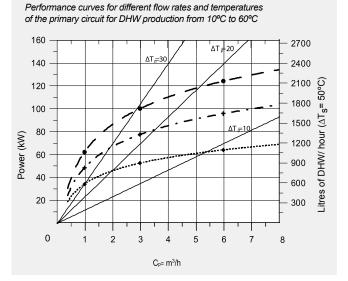


Performance curves for different flow rates and temperatures

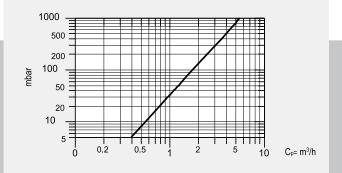
Pressure losses between input and output connections of the primary circuit for different flow rates.

Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp =20°C and Δts =30°C

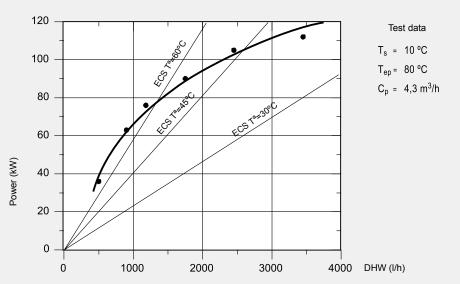
lapesa


CV-1500-M1B

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C 200 - 4750 - 4500 - 4250 - 3750 - 3500 - 3250 - 22500 - 22500 - 22500 - 17500 - 1500 - 1250 - 1000 - 7500 - 500 - 250 180 160 Litres of DHW/ hour $(\Delta T_{s}$ = 35°C) 140 120 ΔT,=10 100 Power (kW) 80 60 -40 20 0 2 3 6 7 8 9 4 5 1 Cp= m³/h

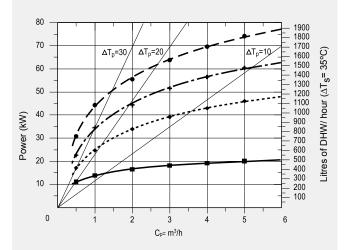

Performance CV-1500-M1/M2		
Peak flow rate at 40°C	L/10min	3188
Peak flow rate at 45°C	L/10min	2732
Peak flow rate at 60°C	L/10min	1913
Peak flow rate at 40°C	L/60min	7438
Peak flow rate at 45°C	L/60min	6274
Peak flow rate at 60°C	L/60min	3829
Continuous flow at 40°C	L/h	5100
Continuous flow at 45°C	L/h	4250
Continuous flow at 60°C	L/h	2300
Preheating time from de 10 to 60°C	min	78
Primary circuit flow rate	m³∕h	8

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

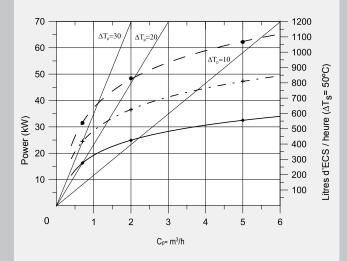

 $----→ - T_{ep} = 90 °C + ---→ - T_{ep} = 70 °C$ $---→ - T_{ep} = 80 °C + ---→ - T_{ep} = 55 °C$

Pressure losses between input and output connections of the primary circuit for different flow rates.

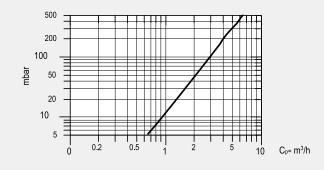
Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for Δ Tp=20°C and Δ ts=30°C


12

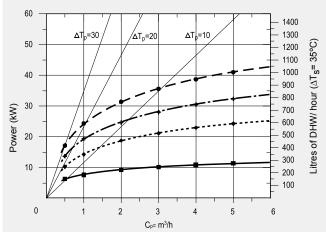
CV-300-M2


 $------ T_{ep} = 90 °C ------ T_{ep} = 70 °C$ $------ T_{ep} = 80 °C ------ T_{ep} = 55 °C$

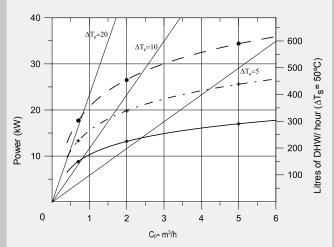
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C


Lower coil

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C



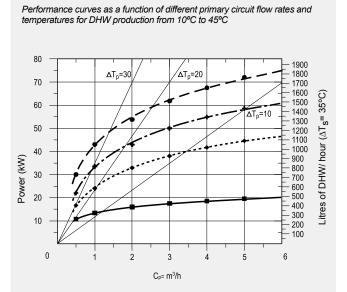
Pressure losses between the input and output connections of the primary circuit for different flow rates.



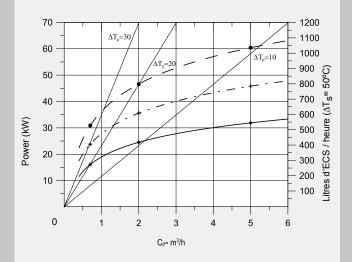
Upper coil

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C

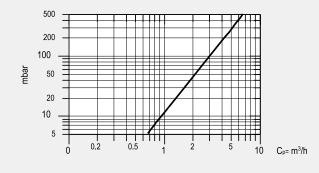
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60° C



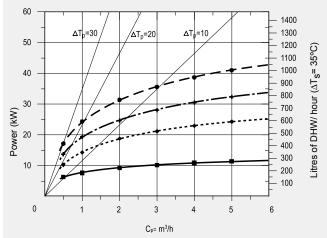
Pressure losses between the input and output connections of the primary circuit for different flow rates.



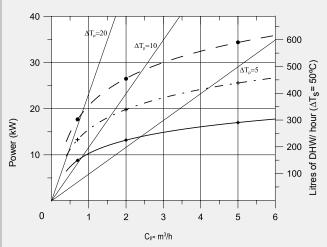
CV-400-M2


Lower coil

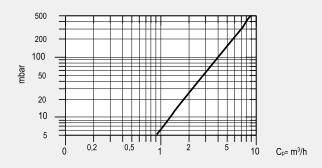
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C



Pressure losses between the input and output connections of the primary circuit for different flow rates.



Upper coil


Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 45° C

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60° C

Pressure losses between the input and output connections of the primary circuit for different flow rates.

Lower coil

CV-500-M2

90

80

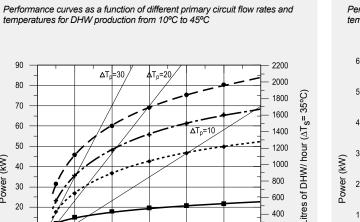
70

60

50

40

30


20

10

0

Power (kW)

lapesa

5

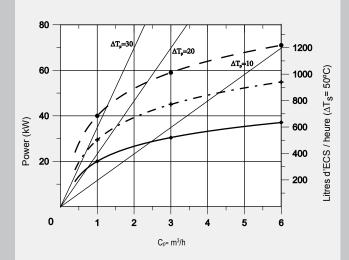
4

800

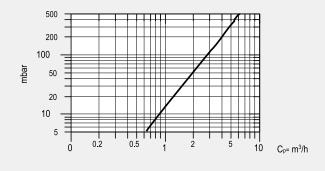
600

400

200

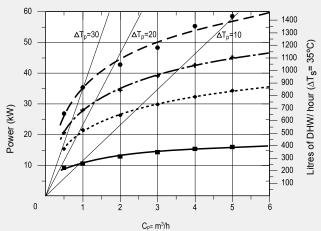

6

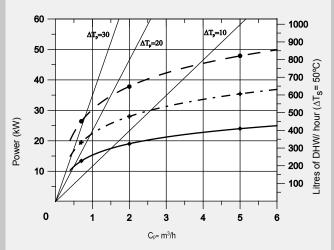
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60°C


3

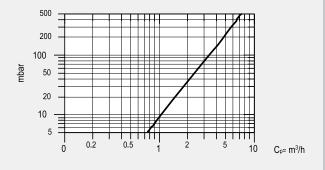
C_p= m³/h

2


Pressure losses between the input and output connections of the primary circuit for different flow rates.

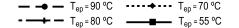

 $T_{ep} = 90 \text{ °C}$ $---- T_{ep} = 70 \text{ °C}$ — T_{ep}=80 °C − T_{ep} = 55 °C -

Upper coil


Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C

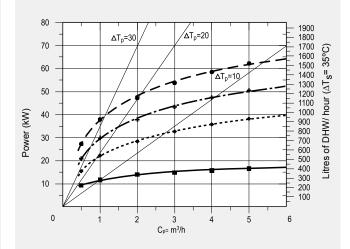
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60°C

Pressure losses between the input and output connections of the primary circuit for different flow rates.

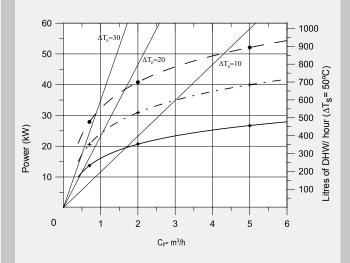

Lower coil

CV-800-M2

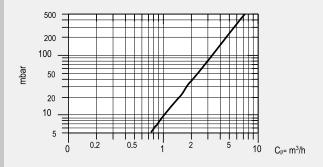
0


2

3



Upper coil


Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 45° C

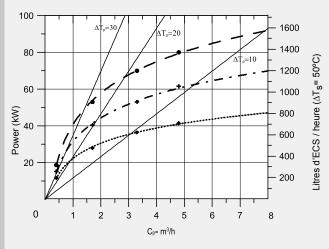
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C

Pressure losses between the input and output connections of the primary $\ ^{\rm C}$ circuit for different flow rates.

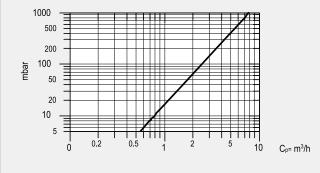
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C 120 2800 $\Delta T_{p}=30$ ΔT =20 100 35°C) 2400 (∆T_S= $\Delta T_{n}=10$ 2000 80 hour 1600 60 Power (kW) _itres of DHW/ 1200 40 800 20 400

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C

4

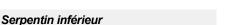

Cp= m3/h

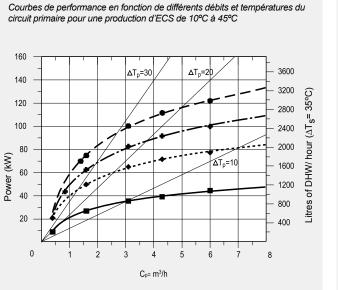
6


5

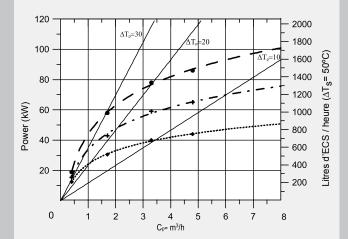
7

8

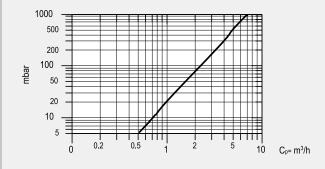

Pressure losses between the input and output connections of the primary circuit for different flow rates.



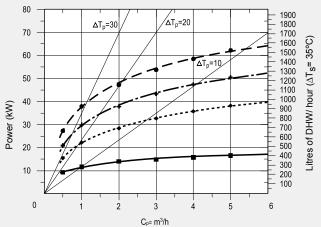
С

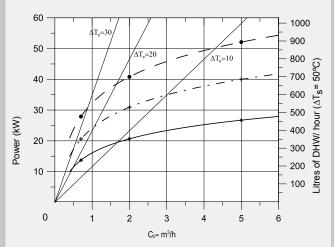

CV-1000-M2

lapesa

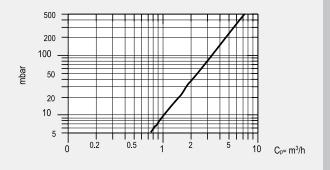


Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C


Pressure losses between the input and output connections of the primary circuit for different flow rates.

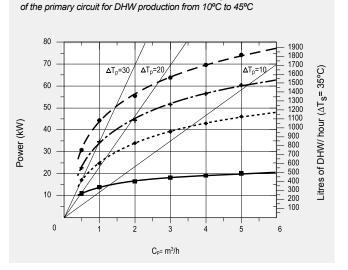

— — Т _{ер} =90 °С	••••• T _{ep} =70 °C
T _{ep} =80 °C	T _{ep} = 55 °C

Serpentin supérieur


Courbes de performance en fonction de différents débits et températures du circuit primaire pour une production d'ECS de 10° C à 45° C

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60° C

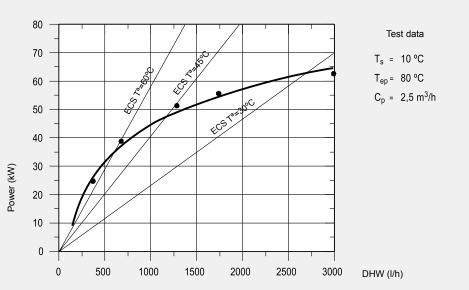
Pressure losses between the input and output connections of the primary circuit for different flow rates.

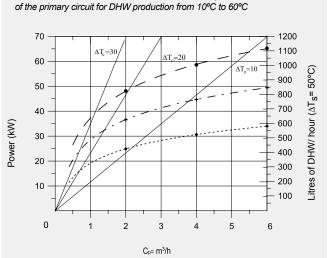


Performance curves for different flow rates and temperatures

lapesa

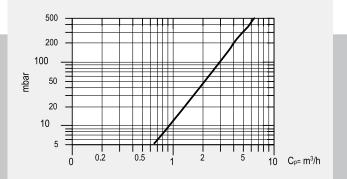
CV-160-HLM


 $----→ - T_{ep} = 90 °C + ----→ --- T_{ep} = 70 °C$ $---→ - T_{ep} = 80 °C + ----→ T_{ep} = 55 °C$



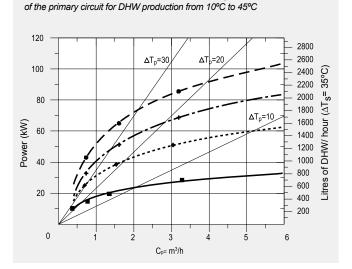
Performance CV-160-HL/M		
Peak flow rate at 40°C	L/10'	380
Peak flow rate at 45°C	L/10'	326
Peak flow rate at 60°C	L/10'	228
Peak flow rate at 40°C	L/60'	2105
Peak flow rate at 45°C	L/60'	1763
Peak flow rate at 60°C	L/60'	1049
Continuous flow at 40°C	Ltrs/h	2070
Continuous flow at 45°C	Ltrs/h	1725
Continuous flow at 60°C	Ltrs/h	985
Preheating time from de 10 to 60°C	Min	19
Primary circuit flow rate	m3/h	6

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C $\,$


Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp =20°C and Δts =30°C

Performance curves for different flow rates and temperatures

Pressure losses between input and output connections of the primary circuit for different flow rates.



Performance curves for different flow rates and temperatures

lapesa

CV-200-HL

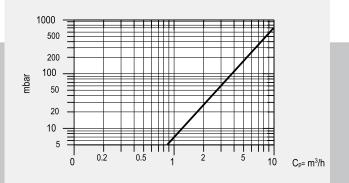
T_{ep} = 90 °C ••••• T_{ep} = 70 °C — T_{ep} = 55 °C — T_{ep} = 80 °C .

Performances CV-200-HL		
Peak flow rate at 40°C	L/10min	435
Peak flow rate at 45°C	L/10min	389
Peak flow rate at 60°C	L/10min	273
Peak flow rate at 40°C	L/60min	2750
Peak flow rate at 45°C	L/60min	2513
Peak flow rate at 60°C	L/60min	1504
Continuous flow at 40°C	L/h	2775
Continuous flow at 45°C	L/h	2549
Continuous flow at 60°C	L/h	1777
Preheating time from de 10 to 60°C	min	15
Primary circuit flow rate	m³∕h	6

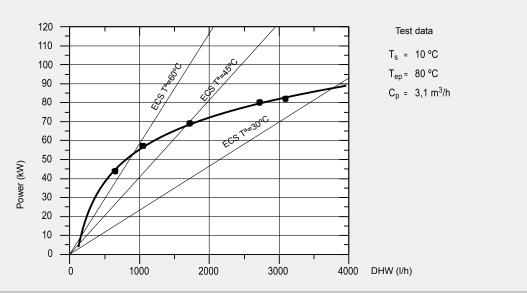
Note: Performance data assumes a primary flow temperature of $85^{\rm o}{\rm C}$ and domestic cold water supply of $10^{\rm o}{\rm C}$

 $\Delta T_p=20$ 1600 Litres of DHW/ hour (ΔT_{S} = 50°C) 1400 80 $\Delta T_p = 10$ 1200 60 1000 800 40 600 400 20 200 0 6 2 5 1 3 4 C_p= m³/h

Performance curves for different flow rates and temperatures


of the primary circuit for DHW production from 10°C to 60°C

ΔT_p=30

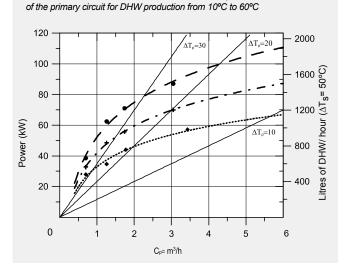

100

Power (kW)

Pressure losses between input and output connections of the primary circuit for different flow rates.

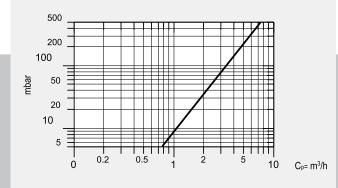
Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for $\Delta Tp=20^{\circ}C$ and $\Delta ts=30^{\circ}C$

lapesa

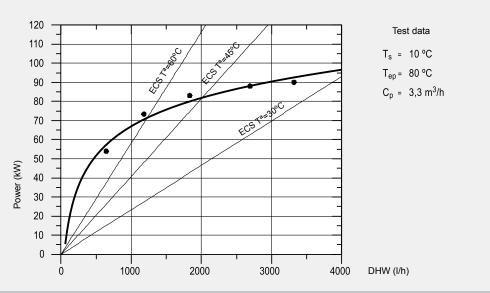

CV-300-HL

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C 160 ∆T_p=30 3600 140 **∆T**_p=20 3200 õ 120 32 2800 100 2400 [∆] hour Power (kW) 80 2000 DHW/ ∆T_p=10 1600 60 1200 of 40 800 Litres 20 400 0 6 5 Cp= m³/h

Performance CV-300-HL		
Peak flow rate at 40°C	L/10min	605
Peak flow rate at 45°C	L/10min	546
Peak flow rate at 60°C	L/10min	383
Peak flow rate at 40°C	L/60min	3470
Peak flow rate at 45°C	L/60min	3222
Peak flow rate at 60°C	L/60min	1973
Continuous flow at 40°C	L/h	3440
Continuous flow at 45°C	L/h	3211
Continuous flow at 60°C	L/h	1907
Preheating time from de 10 to 60°C	min	18
Primary circuit flow rate	m³/h	6


Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

 $----→ - T_{ep} = 90 °C + ---→ - T_{ep} = 70 °C$ $---→ - T_{ep} = 80 °C + ---→ - T_{ep} = 55 °C$

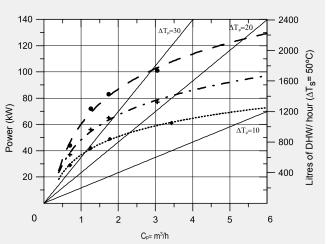


Performance curves for different flow rates and temperatures

Pressure losses between input and output connections of the primary circuit for different flow rates.

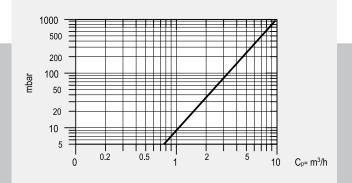


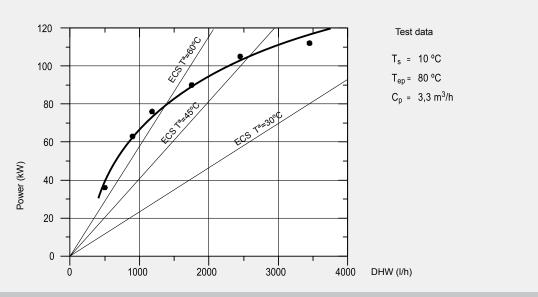
Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp =20°C and Δts =30°C


lapesa

CV-400-HL

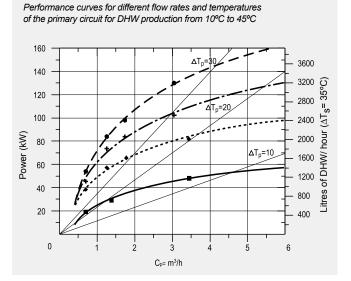
Performance CV-400-HL		
Peak flow rate at 40°C	L/10min	835
Peak flow rate at 45°C	L/10min	751
Peak flow rate at 60°C	L/10min	525
Peak flow rate at 40°C	L/60min	4455
Peak flow rate at 45°C	L/60min	4105
Peak flow rate at 60°C	L/60min	2380
Continuous flow at 40°C	L/h	4345
Continuous flow at 45°C	L/h	4025
Continuous flow at 60°C	L/h	2226
Preheating time from de 10 to 60°C	min	20
Primary circuit flow rate	m³∕h	6


Note: Performance data assumes a primary flow temperature of 85° C and domestic cold water supply of 10° C


Performance curves for different flow rates and temperatures

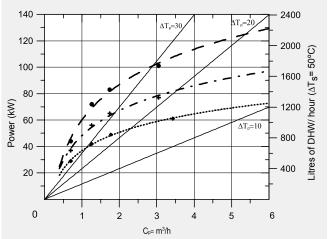
of the primary circuit for DHW production from 10°C to 60°C

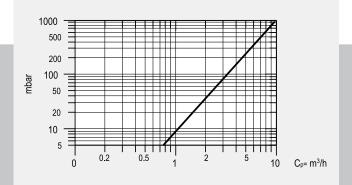
Pressure losses between input and output connections of the primary circuit for different flow rates.



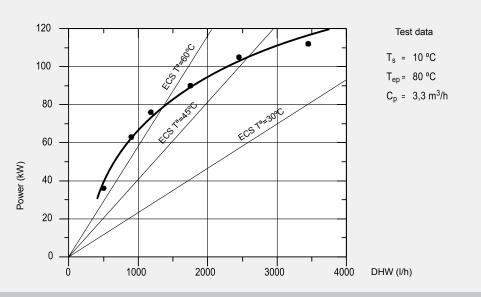
Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for Δ Tp=20°C and Δ ts=30°C

lapesa


CV-500-HL


Performance CV-500-HL		
Peak flow rate at 40°C	L/10min	1085
Peak flow rate at 45°C	L/10min	977
Peak flow rate at 60°C	L/10min	683
Peak flow rate at 40°C	L/60min	4705
Peak flow rate at 45°C	L/60min	4331
Peak flow rate at 60°C	L/60min	2538
Continuous flow at 40°C	L/h	4345
Continuous flow at 45°C	L/h	4025
Continuous flow at 60°C	L/h	2226
Preheating time from de 10 to 60°C	min	22
Primary circuit flow rate	m³/h	6

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

Pressure losses between input and output connections of the primary circuit for different flow rates.

Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for Δ Tp=20°C and Δ ts=30°C

lapesa

2800

2400

2000 الم

1600) Norr

1200

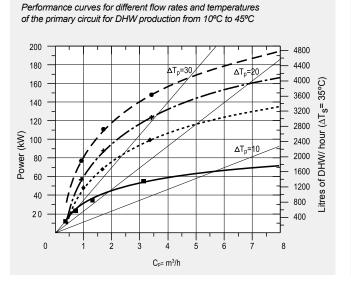
800

400

8

7

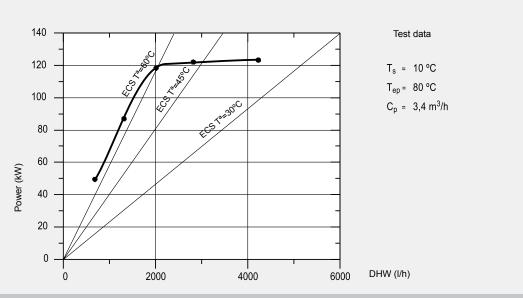
 $\Delta T_{r}=10$


50°C)

₫

Litres of DHW/

CV-800-HL


 $\Delta T_{r}=2$

Performance CV-800-HL		
Peak flow rate at 40°C	L/10min	1625
Peak flow rate at 45°C	L/10min	1465
Peak flow rate at 60°C	L/10min	1024
Peak flow rate at 40°C	L/60min	6065
Peak flow rate at 45°C	L/60min	5449
Peak flow rate at 60°C	L/60min	3406
Continuous flow at 40°C	L/h	5330
Continuous flow at 45°C	L/h	5449
Continuous flow at 60°C	L/h	3046
Preheating time from de 10 to 60°C	min	26
Primary circuit flow rate	m³∕h	8

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10° C

Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp =20°C and Δts =30°C

C_P= m³/h

4

5

6

Performance curves for different flow rates and temperatures

of the primary circuit for DHW production from 10°C to 60°C

T.=

180

160

140

120

100

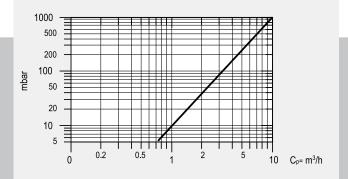
80

60

40

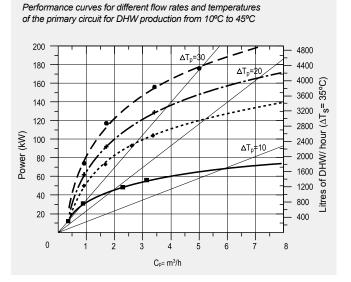
20

0


2

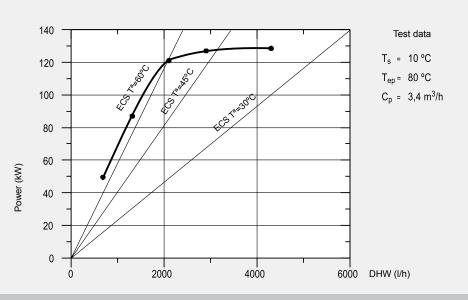
3

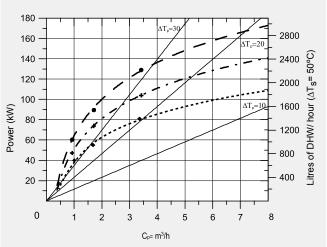
1


Power (kW)

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

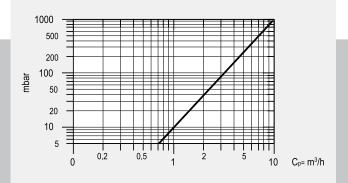

CV-1000-HL



Performance CV-1000-HL		
Peak flow rate at 40°C	L/10min	1950
Peak flow rate at 45°C	L/10min	1754
Peak flow rate at 60°C	L/10min	1229
Peak flow rate at 40°C	L/60min	6605
Peak flow rate at 45°C	L/60min	5982
Peak flow rate at 60°C	L/60min	3708
Continuous flow at 40°C	L/h	5585
Continuous flow at 45°C	L/h	5075
Continuous flow at 60°C	L/h	2975
Preheating time from de 10 to 60°C	min	31
Primary circuit flow rate	m³∕h	8

Note: Performance data assumes a primary flow temperature of 85°C and domestic cold water supply of 10°C

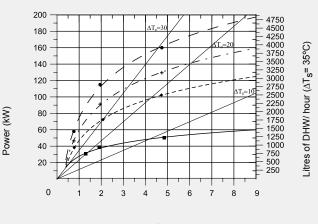
Continuous DHW production curves with different temperatures and predetermined flow rate of the primary circuit for Δ Tp=20°C and Δ ts=30°C



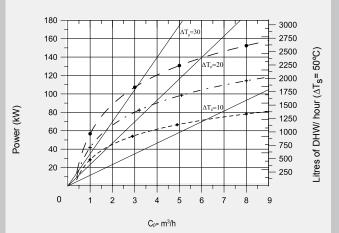
Performance curves for different flow rates and temperatures

of the primary circuit for DHW production from 10°C to 60°C

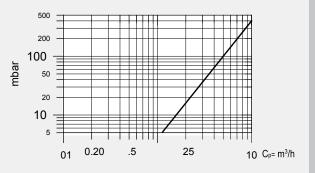
Pressure losses between input and output connections of the primary circuit for different flow rates.



CV-350-HL/DUO

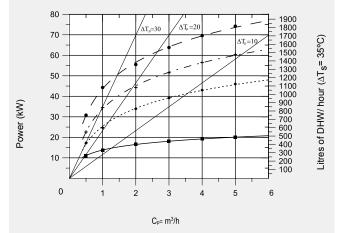

Upper coil

Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C

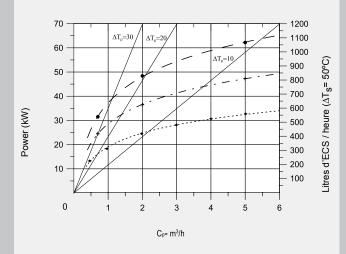


C_p= m³/h

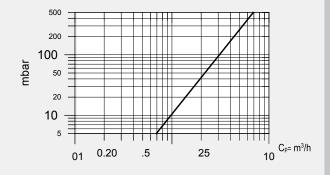
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 60° C



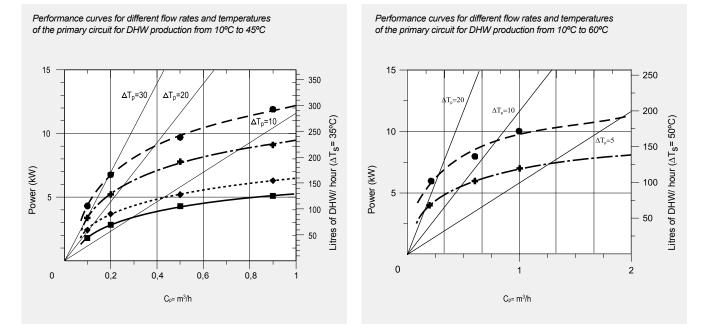
Pressure losses between the input and output connections of the primary circuit for different flow rates.



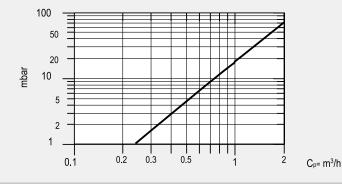
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10°C to 45°C


Lower coil

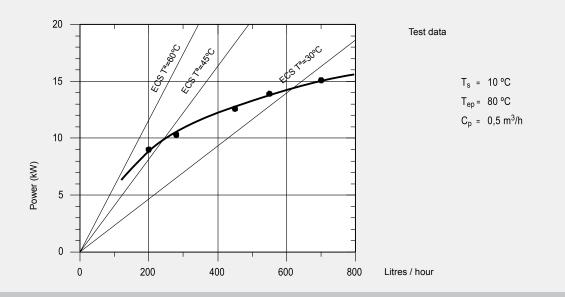
Performance curves as a function of different primary circuit flow rates and temperatures for DHW production from 10° C to 60° C



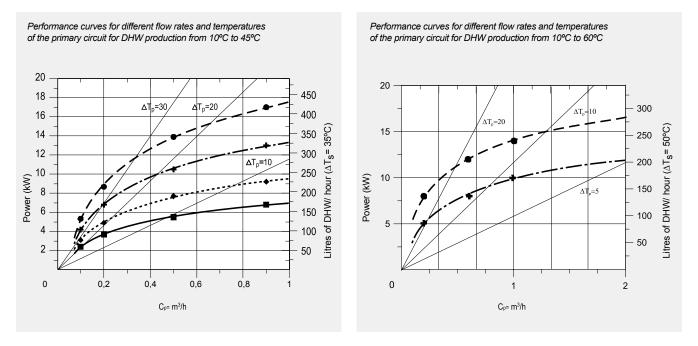
Pressure losses between the input and output connections of the primary circuit for different flow rates.



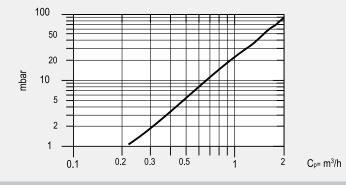
lapesa


CV-80-M1S

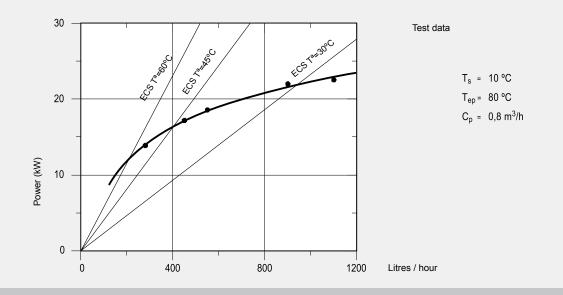
Pressure losses between the input and output connections of the primary circuit for different flow rates.



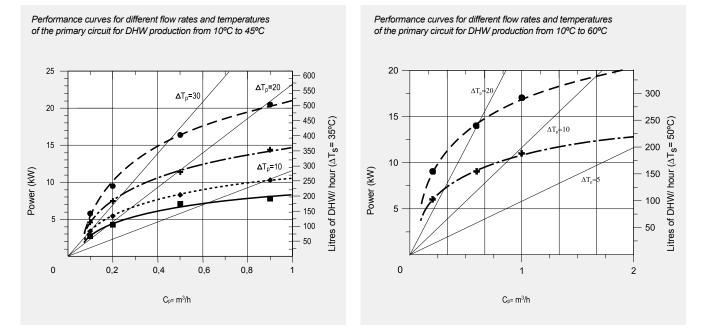
Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for $\Delta Tp=20^\circ$ C and $\Delta ts=30^\circ$ C



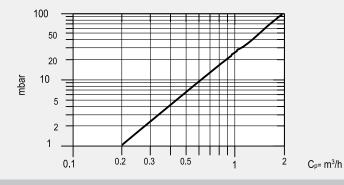
lapesa


CV-110-M1S

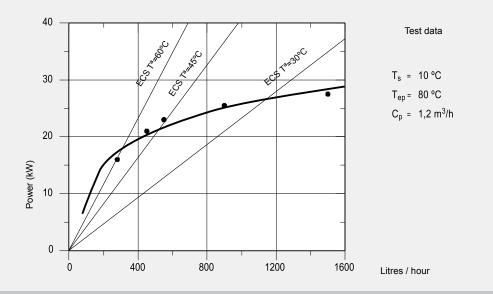
Pressure losses between the input and output connections of the primary circuit for different flow rates.



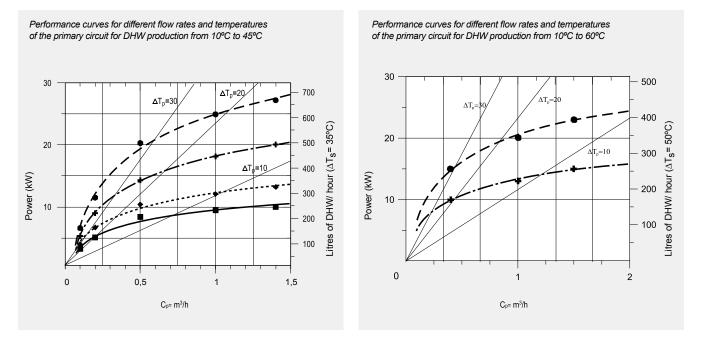
Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for ΔTp =20°C and Δts =30°C



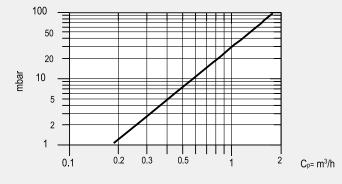
lapesa


CV-150-M1S

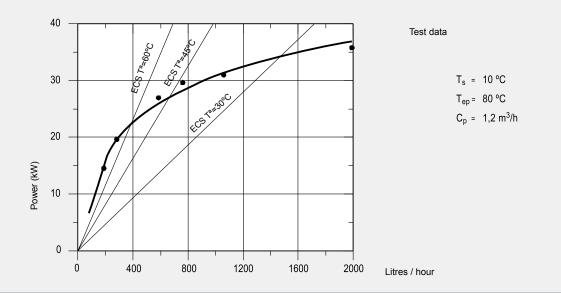
Pressure losses between the input and output connections of the primary circuit for different flow rates.



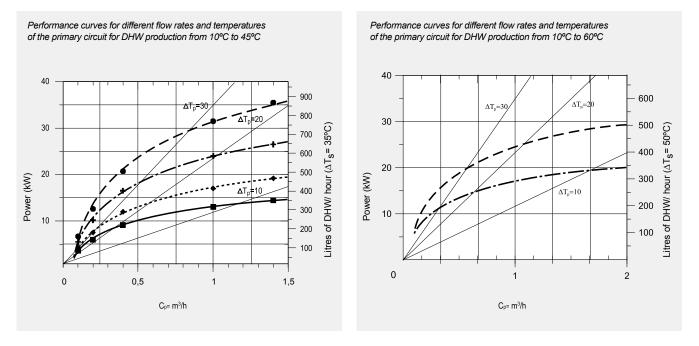
Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for $\Delta Tp=20^\circ$ C and $\Delta ts=30^\circ$ C

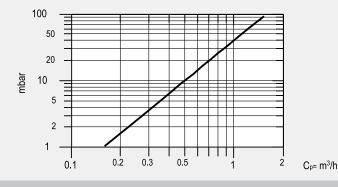


lapesa

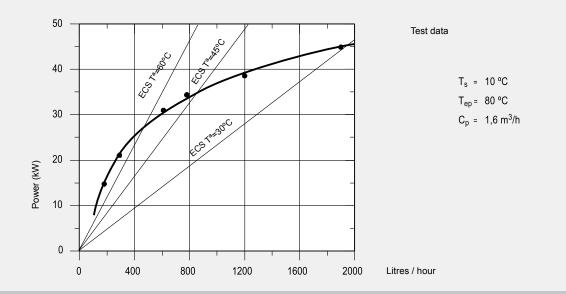

CV-200-M1S

Pressure losses between the input and output connections of the primary circuit for different flow rates.

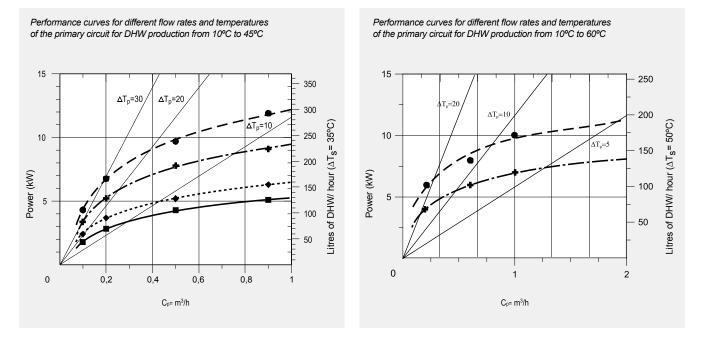

Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for $\Delta Tp=20^\circ$ C and $\Delta ts=30^\circ$ C


lapesa

CV-300-M1S

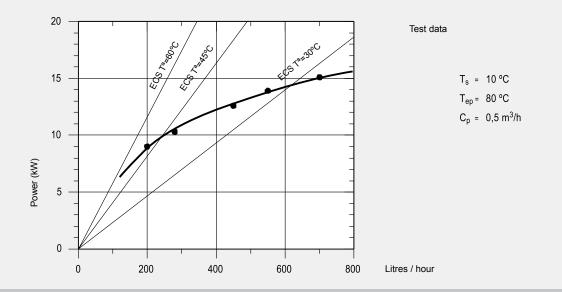

 $----→ - T_{ep} = 80°C + ----→ - T_{ep} = 60°C$ $---→ - T_{ep} = 70°C + ---→ - T_{ep} = 55°C$

Pressure losses between the input and output connections of the primary circuit for different flow rates.

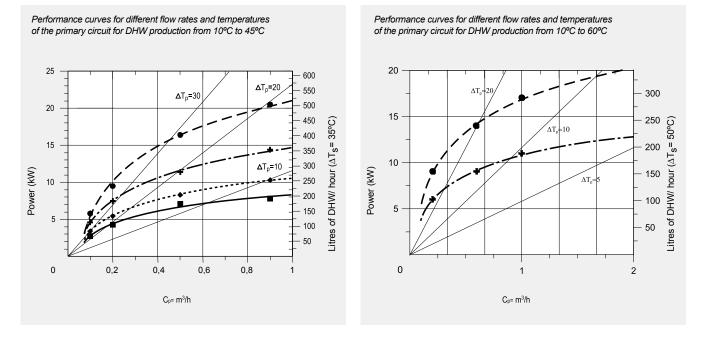


Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for Δ Tp=20°C and Δ ts=30°C

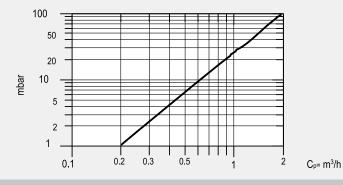
lapesa


CV-90-M1M

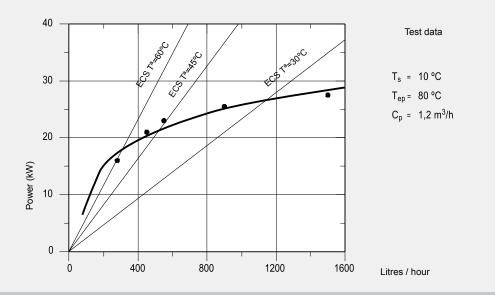
Pressure losses between the input and output connections of the primary circuit for different flow rates.



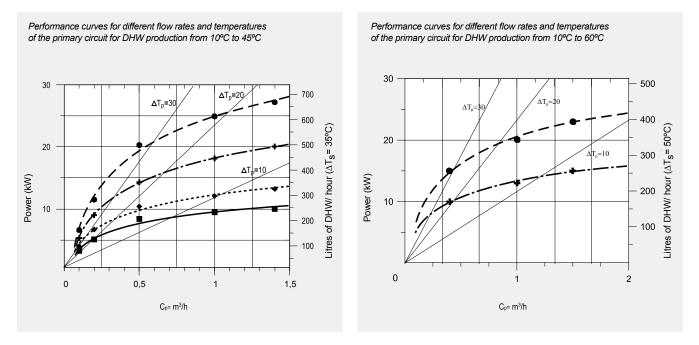
Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for $\Delta Tp=20^\circ$ C and $\Delta ts=30^\circ$ C



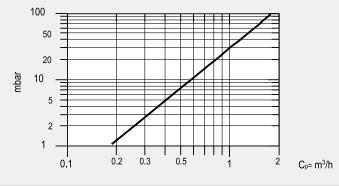
lapesa


CV-120-M1M

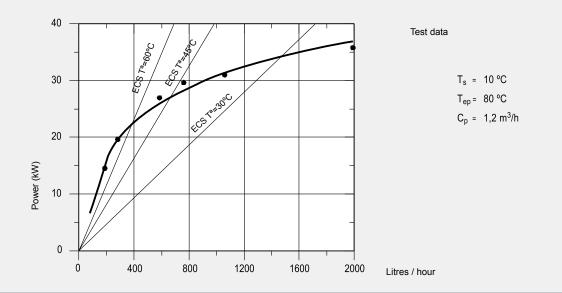
Pressure losses between the input and output connections of the primary circuit for different flow rates.



Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for Δ Tp=20°C and Δ ts=30°C

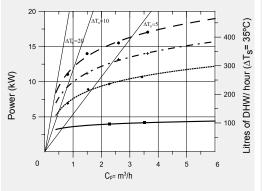


lapesa

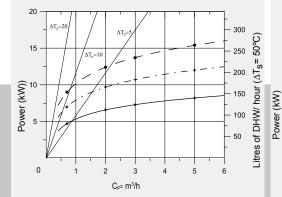

CV-160-M1M

Pressure losses between the input and output connections of the primary circuit for different flow rates.

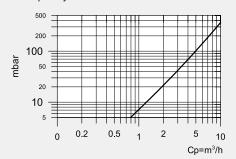
Continuous water production curves with different temperatures and predetermined flow rate of the primary circuit for $\Delta Tp=20^\circ$ C and $\Delta ts=30^\circ$ C



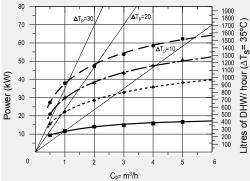
CV-800/1000-P/DUO


lapesa

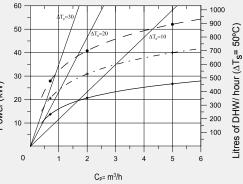
Lower coil


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

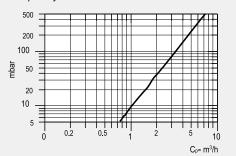
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

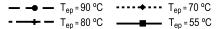


Pressure losses between input and output connections of the primary circuit for different flow rates.

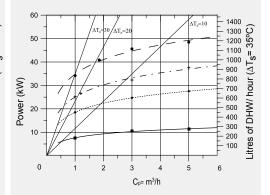


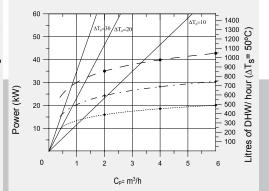
Supporting coil


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10° C to 45° C



Performance curves for different flow rates and temperaturesof the primary circuit for DHW production from 10°C to 60°C


Pressure losses between input and output connections of the primary circuit for different flow rates.



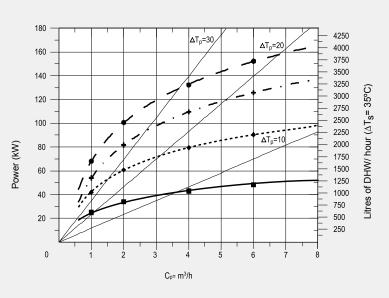
Double wall

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

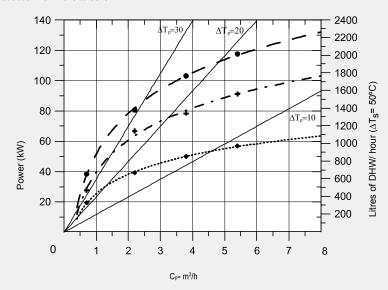
Performance curves for different flow rates and temperaturesof the primary circuit for DHW production from 10°C to 60°C

Performances CV-		800-P/DUO	1000-P/DUO
Peak flow rate at 40°C	L/10'	418	542
Peak flow rate at 45°C	L/10'	358	464
Peak flow rate at 60°C	L/10'	251	325
Peak flow rate at 40°C	L/60'	1264	1387
Peak flow rate at 45°C	L/60'	1058	1164
Peak flow rate at 60°C	L/60'	651	725
Continuous flow at 40°C	Ltrs/h	1015	1015
Continuous flow at 45°C	Ltrs/h	840	840
Continuous flow at 60°C	Ltrs/h	480	480
Preheating time from de 10 to 75°C Primary circuit flow rate	Min	44	57
Primary circuit flow rate	m³/h	8	8

lapesa

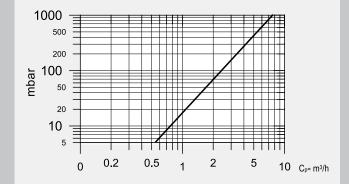

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C


- T_{ep} = 55 °C

MXV/MVV-1500-SB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

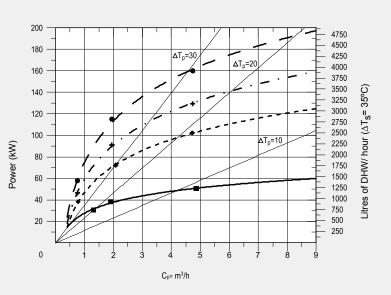


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

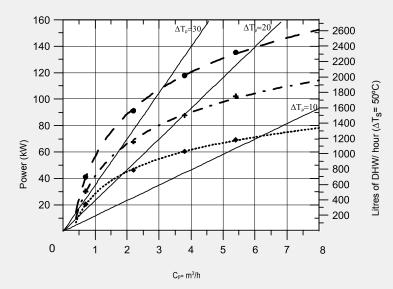
Performance MXV/MVV-1500-SB		
Peak flow rate at 40°C	L/10min	2925
Peak flow rate at 45°C	L/10min	2500
Peak flow rate at 60°C	L/10min	1750
Peak flow rate at 40°C	L/60min	6675
Peak flow rate at 45°C	L/60min	5600
Peak flow rate at 60°C	L/60min	3400
Continuous flow at 40°C	L/h	4500
Continuous flow at 45°C	L/h	3725
Continuous flow at 60°C	L/h	2000
Preheating time from de 10 to 75°C	min	77
Primary circuit flow rate	m³/h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

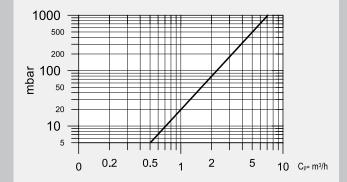

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C


− T_{ep} = 55 °C

MXV/MVV-2000-SB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

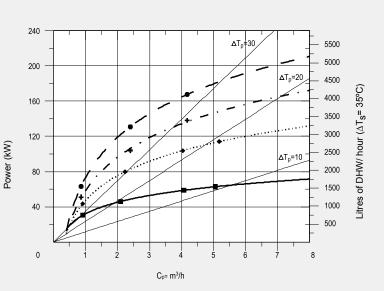


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

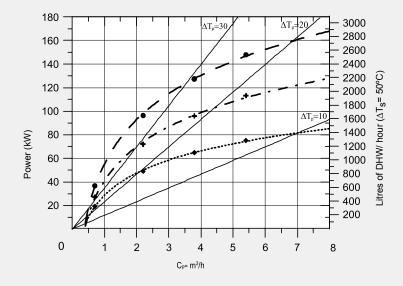
Performance MXV/MVV-2000-SB		
Peak flow rate at 40°C	L/10min	3900
Peak flow rate at 45°C	L/10min	3325
Peak flow rate at 60°C	L/10min	2325
Peak flow rate at 40°C	L/60min	8150
Peak flow rate at 45°C	L/60min	6850
Peak flow rate at 60°C	L/60min	4225
Continuous flow at 40°C	L/h	5100
Continuous flow at 45°C	L/h	4250
Continuous flow at 60°C	L/h	2300
Preheating time from de 10 to 75°C	min	88
Primary circuit flow rate	m³/h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

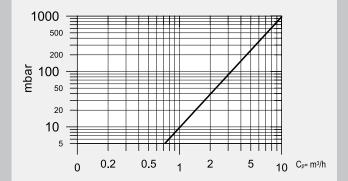

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C


− T_{ep} = 55 °C

MXV/MVV-2500-SB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10° C to 45° C



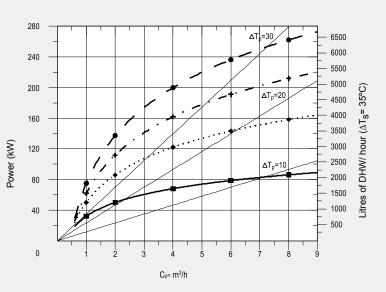
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

Performance MXV/MVV-2500-SB		
Peak flow rate at 40°C	L/10min	4875
Peak flow rate at 45°C	L/10min	4175
Peak flow rate at 60°C	L/10min	2925
Peak flow rate at 40°C	L/60min	9625
Peak flow rate at 45°C	L/60min	8125
Peak flow rate at 60°C	L/60min	5050
Continuous flow at 40°C	L/h	5700
Continuous flow at 45°C	L/h	4750
Continuous flow at 60°C	L/h	2550
Preheating time from de 10 to 75°C	min	100
Primary circuit flow rate	m³/h	8

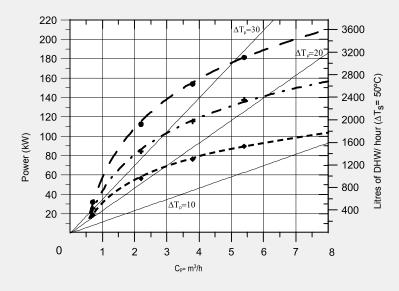
Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

T_{ep} = 90 °C

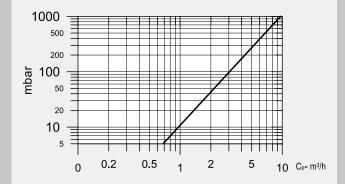

- T_{ep} = 80 °C --- T_{ep} = 70 °C

− T_{ep} = 55 °C


+

MXV/MVV-3000-SB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

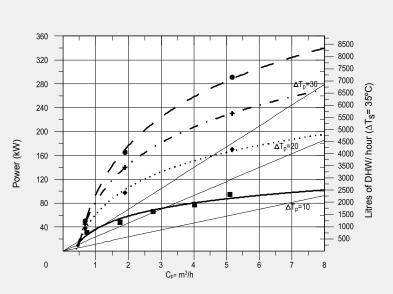


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

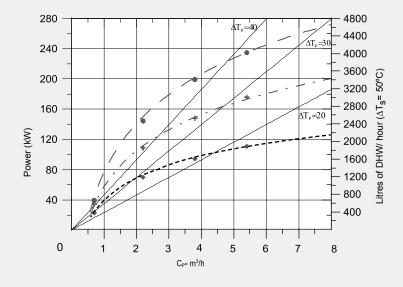
Performance MXV/MVV-3000-SB		
Peak flow rate at 40°C	L/10min	5850
Peak flow rate at 45°C	L/10min	5000
Peak flow rate at 60°C	L/10min	3500
Peak flow rate at 40°C	L/60min	11675
Peak flow rate at 45°C	L/60min	9825
Peak flow rate at 60°C	L/60min	6125
Continuous flow at 40°C	L/h	7000
Continuous flow at 45°C	L/h	5800
Continuous flow at 60°C	L/h	3150
Preheating time from de 10 to 75°C	min	97
Primary circuit flow rate	m³/h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

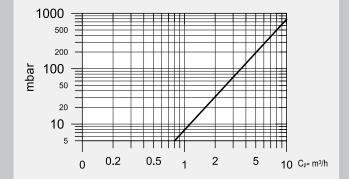

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C


- T_{ep} = 55 °C

MXV/MVV-3500-SB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

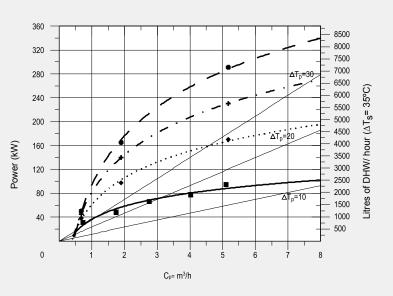


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

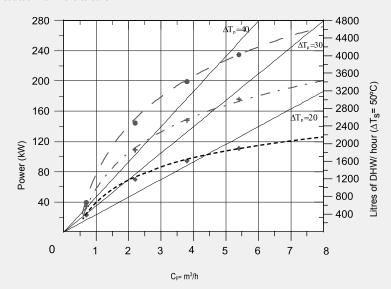
PerformancesMXV/MVV-3500-SB		
Peak flow rate at 40°C	L/10min	6825
Peak flow rate at 45°C	L/10min	5850
Peak flow rate at 60°C	L/10min	4075
Peak flow rate at 40°C	L/60min	14240
Peak flow rate at 45°C	L/60min	12055
Peak flow rate at 60°C	L/60min	7405
Continuous flow at 40°C	L/h	8900
Continuous flow at 45°C	L/h	7450
Continuous flow at 60°C	L/h	4000
Preheating time from de 10 to 75°C	min	100
Primary circuit flow rate	m³/h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

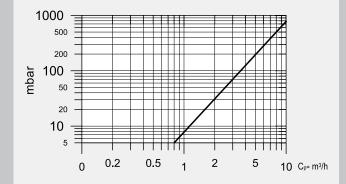

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C


- T_{ep} = 55 °C

MXV/MVV-4000-SB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

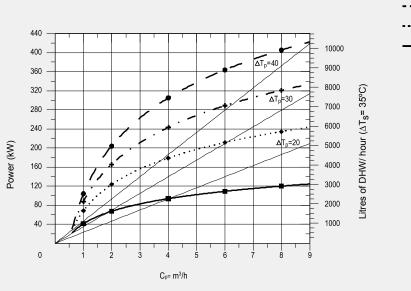


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

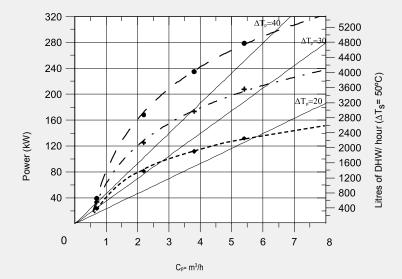
Peak flow rate at 40°C	I /10min	7800
Peak flow rate at 45°C	L/10min	6675
Peak flow rate at 60°C	L/10min	4675
Peak flow rate at 40°C	L/60min	15200
Peak flow rate at 45°C	L/60min	12875
Peak flow rate at 60°C	L/60min	8000
Continuous flow at 40°C	L/h	8900
Continuous flow at 45°C	L/h	7450
Continuous flow at 60°C	L/h	4000
Preheating time from de 10 to 75°C	min	102
Primary circuit flow rate	m³∕h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

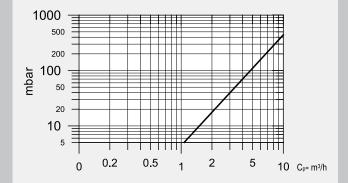

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C


- T_{ep} = 55 °C

MXV/MVV-5000/6000-SB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

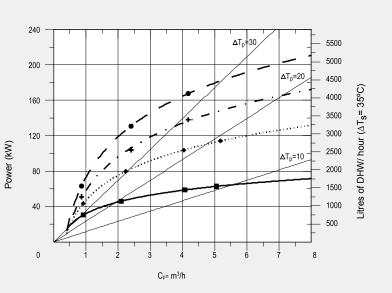


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

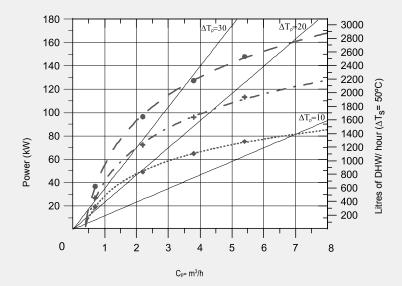
Peak flow rate at 40°C	L/10min	9750
Peak flow rate at 45°C	L/10min	8350
Peak flow rate at 60°C	L/10min	5850
Peak flow rate at 40°C	L/60min	18500
Peak flow rate at 45°C	L/60min	15625
Peak flow rate at 60°C	L/60min	9750
Continuous flow at 40°C	L/h	10500
Continuous flow at 45°C	L/h	8750
Continuous flow at 60°C	L/h	4700
Preheating time from de 10 to 75°C	min	109
Primary circuit flow rate	m³/h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

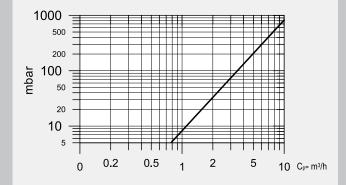

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C


- T_{ep} = 55 °C

MXV/MVV-1500-SSB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

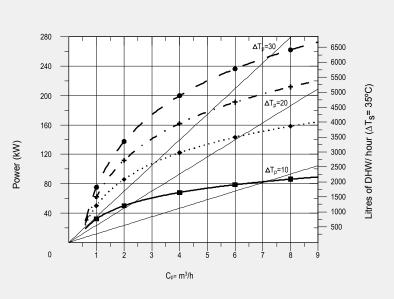


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

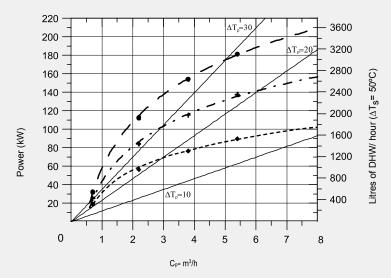
Performance MXV/MVV-1500-SSB		
Peak flow rate at 40°C	L/10min	2925
Peak flow rate at 45°C	L/10min	2500
Peak flow rate at 60°C	L/10min	1750
Peak flow rate at 40°C	L/60min	7675
Peak flow rate at 45°C	L/60min	6450
Peak flow rate at 60°C	L/60min	3875
Continuous flow at 40°C	L/h	5700
Continuous flow at 45°C	L/h	4750
Continuous flow at 60°C	L/h	2550
Preheating time from de 10 to 75°C	min	60
Primary circuit flow rate	m³∕h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

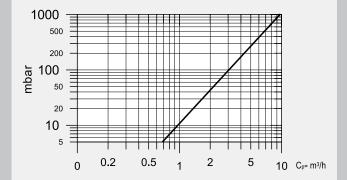

T_{ep} = 90 °C

- T_{ep} = 80 °C --- T_{ep} = 70 °C


– T_{ep} = 55 °C

MXV/MVV-2000-SSB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C



Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

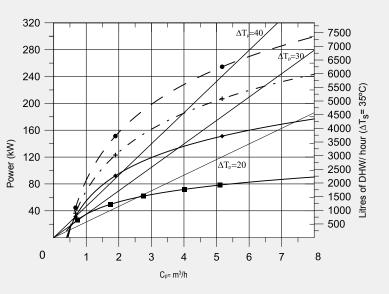
Performance MXV/MVV-2000-SSB		
Peak flow rate at 40°C	L/10min	3900
Peak flow rate at 45°C	L/10min	3325
Peak flow rate at 60°C	L/10min	2325
Peak flow rate at 40°C	L/60min	9725
Peak flow rate at 45°C	L/60min	8150
Peak flow rate at 60°C	L/60min	4950
Continuous flow at 40°C	L/h	7000
Continuous flow at 45°C	L/h	5800
Continuous flow at 60°C	L/h	3150
Preheating time from de 10 to 75°C	min	65
Primary circuit flow rate	m³∕h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

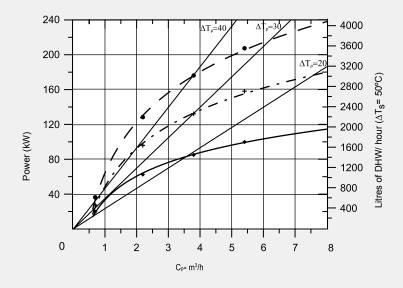
lapesa

T_{ep} = 90 °C

T_{ep} = 80 °C

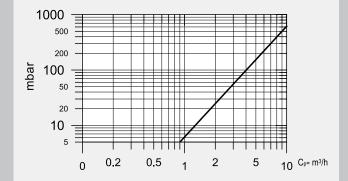

--- T_{ep} = 70 °C

− T_{ep} = 55 °C


٠

MXV/MVV-2500-SSB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

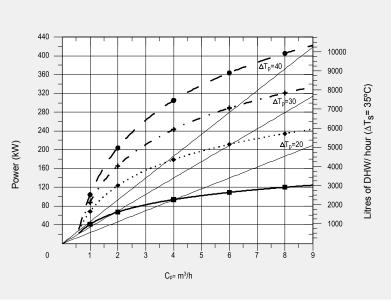


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

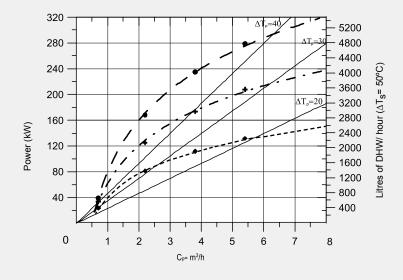
Performance MXV/MVV-2500-SSB		
Peak flow rate at 40°C	L/10min	4875
Peak flow rate at 45°C	L/10min	4175
Peak flow rate at 60°C	L/10min	2925
Peak flow rate at 40°C	L/60min	11550
Peak flow rate at 45°C	L/60min	9735
Peak flow rate at 60°C	L/60min	5930
Continuous flow at 40°C	L/h	8010
Continuous flow at 45°C	L/h	6675
Continuous flow at 60°C	L/h	3605
Preheating time from de 10 to 75°C	min	65
Primary circuit flow rate	m³∕h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

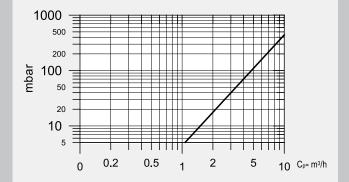

T_{ep} = 90 °C

- T_{ep} = 80 °C --- T_{ep} = 70 °C


– T_{ep} = 55 °C

MXV/MVV-3000-SSB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

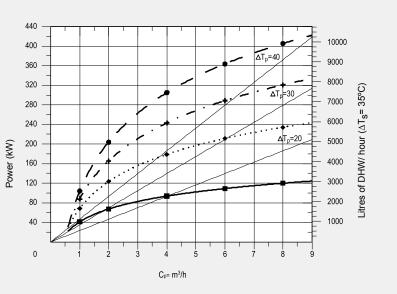


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

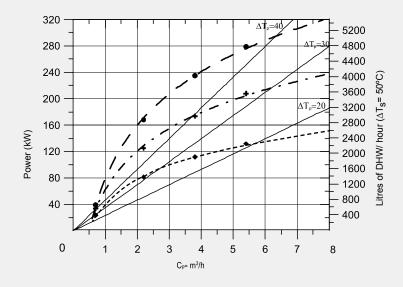
Performance MXV/MVV-3000-SSB		
Peak flow rate at 40°C	L/10min	5850
Peak flow rate at 45°C	L/10min	5000
Peak flow rate at 60°C	L/10min	3500
Peak flow rate at 40°C	L/60min	14600
Peak flow rate at 45°C	L/60min	12275
Peak flow rate at 60°C	L/60min	7400
Continuous flow at 40°C	L/h	10500
Continuous flow at 45°C	L/h	8750
Continuous flow at 60°C	L/h	4700
Preheating time from de 10 to 75°C	min	65
Primary circuit flow rate	m³/h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

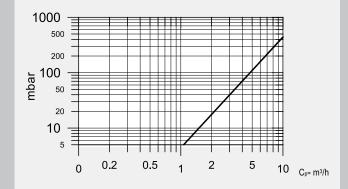

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C


- T_{ep} = 55 °C

MXV/MVV-3500-SSB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C



Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

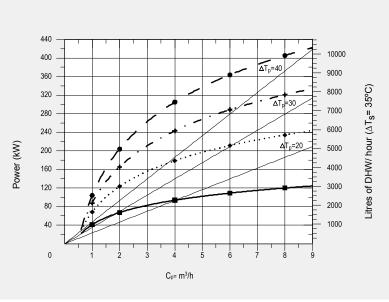
Performance MXV/MVV-3500-SSB		
Peak flow rate at 40°C	L/10min	6825
Peak flow rate at 45°C	L/10min	5850
Peak flow rate at 60°C	L/10min	4075
Peak flow rate at 40°C	L/60min	15575
Peak flow rate at 45°C	L/60min	13125
Peak flow rate at 60°C	L/60min	7975
Continuous flow at 40°C	L/h	10500
Continuous flow at 45°C	L/h	8750
Continuous flow at 60°C	L/h	4700
Preheating time from de 10 to 75°C	min	76
Primary circuit flow rate	m³/h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

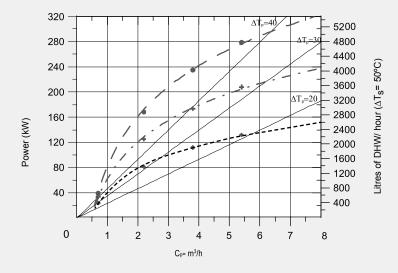
lapesa

T_{ep} = 90 °C

- T_{ep} = 80 °C --- T_{ep} = 70 °C

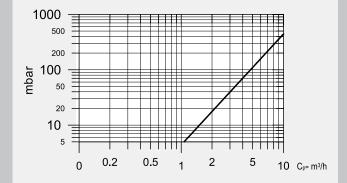

– T_{ep} = 55 °C

-0


+

MXV/MVV-4000-SSB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

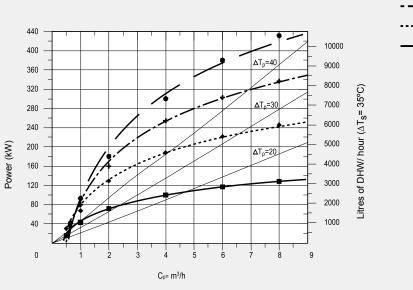


Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

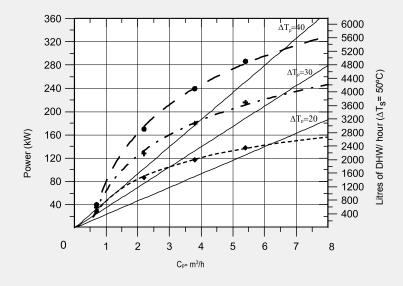
Performance MXV/MVV-4000-SSB		
Peak flow rate at 40°C	L/10min	7800
Peak flow rate at 45°C	L/10min	6675
Peak flow rate at 60°C	L/10min	4675
Peak flow rate at 40°C	L/60min	16550
Peak flow rate at 45°C	L/60min	13950
Peak flow rate at 60°C	L/60min	8575
Continuous flow at 40°C	L/h	10500
Continuous flow at 45°C	L/h	8750
Continuous flow at 60°C	L/h	4700
Preheating time from de 10 to 75°C	min	87
Primary circuit flow rate	m³∕h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

lapesa

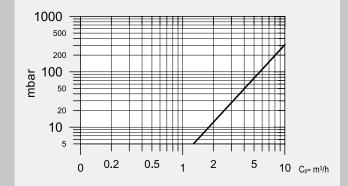

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C


- T_{ep} = 55 °C

MXV/MVV-5000/6000-SSB

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C



Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 60°C

Performance MXV/MVV-5000/6000-SSB		
Peak flow rate at 40°C	L/10min	9750
Peak flow rate at 45°C	L/10min	8350
Peak flow rate at 60°C	L/10min	5850
Peak flow rate at 40°C	L/60min	18900
Peak flow rate at 45°C	L/60min	16000
Peak flow rate at 60°C	L/60min	10000
Continuous flow at 40°C	L/h	11000
Continuous flow at 45°C	L/h	9200
Continuous flow at 60°C	L/h	5000
Preheating time from de 10 to 75°C	min	102
Primary circuit flow rate	m³/h	8

Pressure losses between input and output connections of the primary circuit for different flow rates.

160

140

120

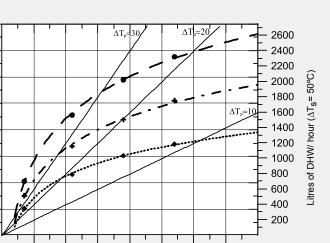
100

80

60

40

20


0

Power (kW)

MXV/MVV-2000-S2B

Lower coil

Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C

5

6

7

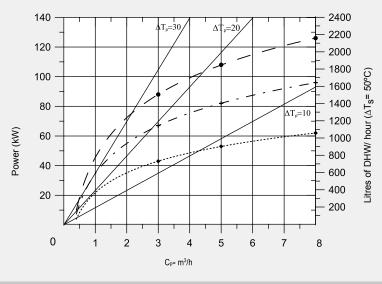
8

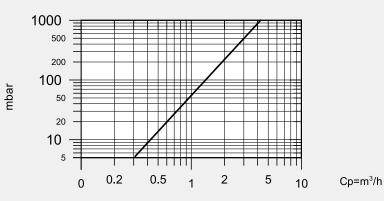
- → - T_{ep} = 90 °C - → - T_{ep} = 80 °C - → - T_{ep} = 70 °C

lapesa

Upper coil

Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C

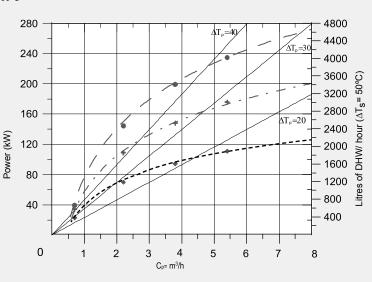

1


2

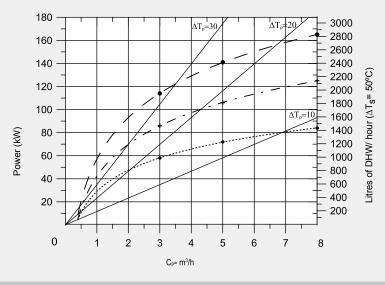
3

4

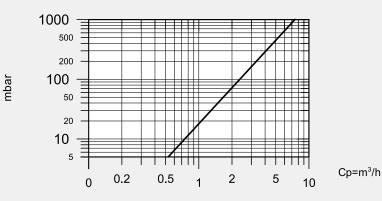
C_p= m³/h



MXV/MVV-3500-S2B


Lower coil

Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C

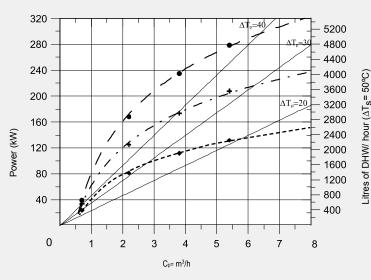


Upper coil

Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C

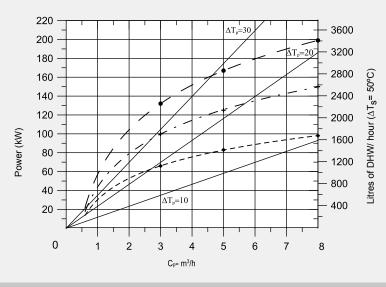
Pressure losses between the input and output connections of the primary circuit for different flow rates. Lower coil

lapesa

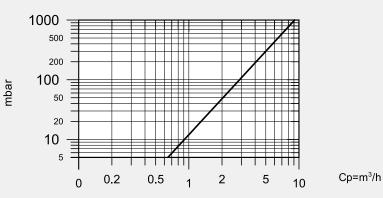

T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C

MXV/MVV-5000/6000-S2B


Lower coil

Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C



Upper coil

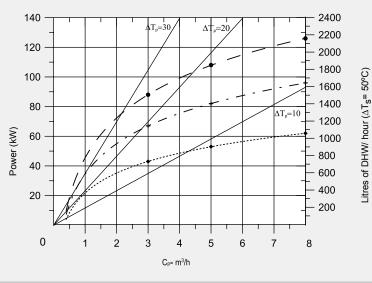
Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C

Pressure losses between the input and output connections of the primary circuit for different flow rates. Lower coil

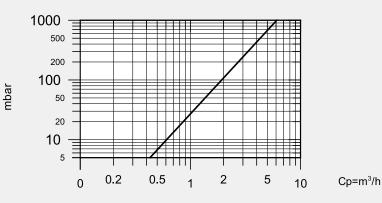
T_{ep} = 90 °C

T_{ep} = 80 °C
T_{ep} = 70 °C

MXV/MVV-2000-SS2B


Lower coil

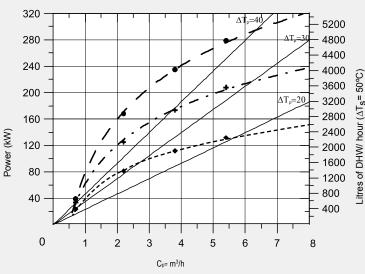
Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C


> 220 3600 ΔT_=30 200 T_=20 3200 180 2800 Litres of DHW/ hour (ΔT_S = 50°C) 160 < < 2400 140 120 2000 Power (kW) 100 1600 80 1200 60 800 40 $\Delta T_p=10$ 400 20 0 1 2 3 4 5 6 7 8 C_p= m³/h

Upper coil

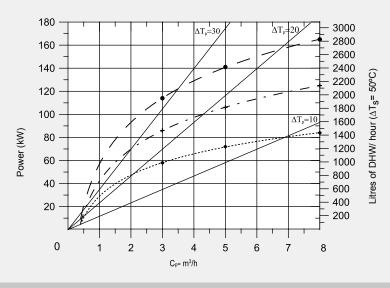
Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C

Pressure losses between the input and output connections of the primary circuit for different flow rates. Lower coil

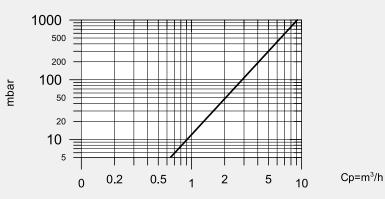

- → T_{ep} = 90 °C → T_{ep} = 80 °C → T_{ep} = 70 °C

lapesa

MXV/MVV-3500-SS2B


Lower coil

Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C



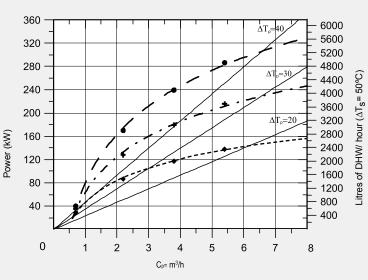
Upper coil

Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C

Pressure losses between the input and output connections of the primary circuit for different flow rates. Lower coil

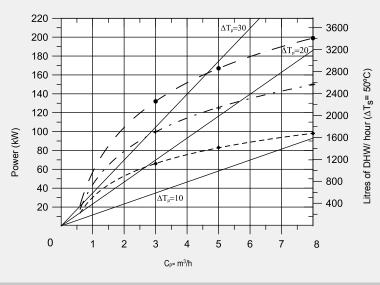
lapesa

T_{ep} = 90 °C

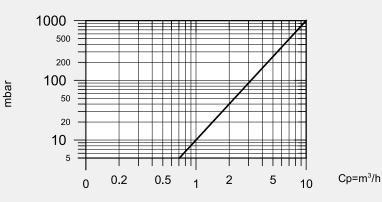

T_{ep} = 80 °C

--- T_{ep} = 70 °C

MXV/MVV-5000/6000-SS2B

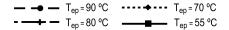

Lower coil

Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C

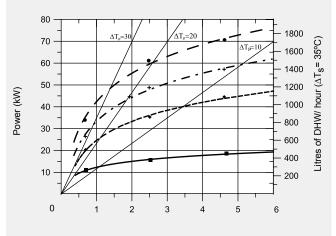


Upper coil

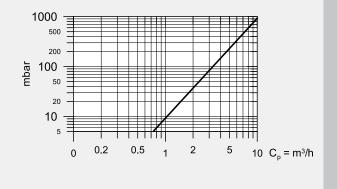
Performance curves of DHW production as a function of different primary circuit flow rates and temperatures. Cold water inlet 10°C / DHW outlet 60°C


Pressure losses between the input and output connections of the primary circuit for different flow rates. Lower coil

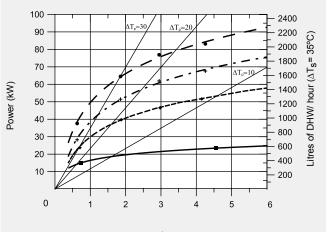
lapesa


G-260/370/600-IS

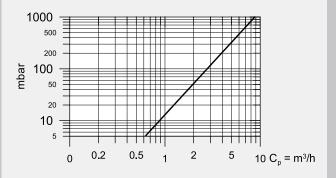
lapesa


G-260/370-IS

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

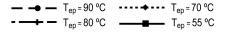

C_p= m³/h

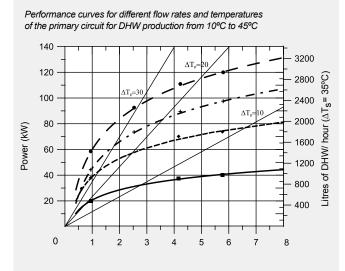
Pressure losses between the input and output connections of the primary circuit for different flow rates.



G-600-IS

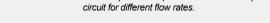
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

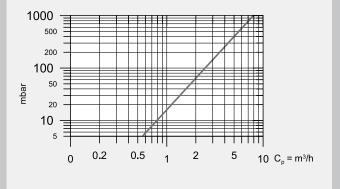

C_p= m³/h

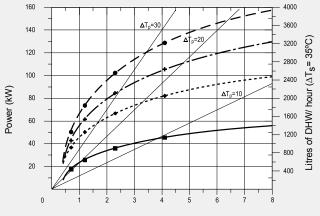

G-800/1000-IS

G-800/1000/1500-IS et MV-1500/2000-IS

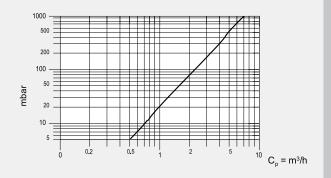
lapesa



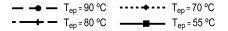

MV-1500/2000-IS


C_p= m³/h

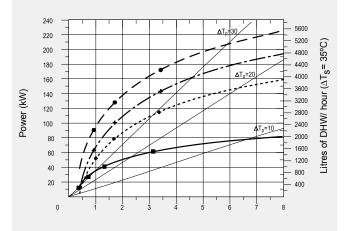
Pressure losses between the input and output connections of the primary



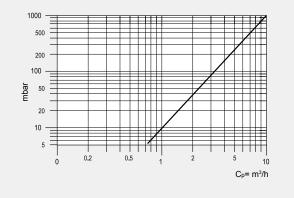
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C



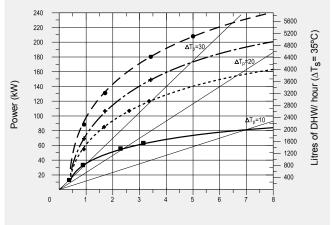
C_p= m³/h


MV-2500/3000/3500/4000/5000-IS

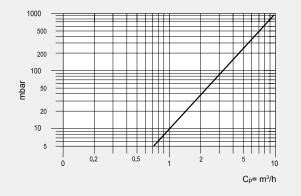
lapesa


MV-2500/3000-IS

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C

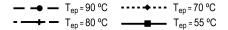

Cp= m3/h

Pressure losses between the input and output connections of the primary circuit for different flow rates.

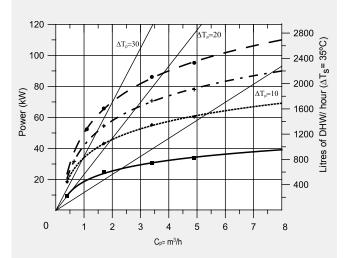


MV-3500/4000/5000-IS

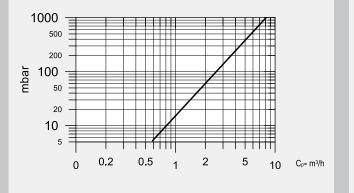
Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10° C to 45° C



C_p= m³/h

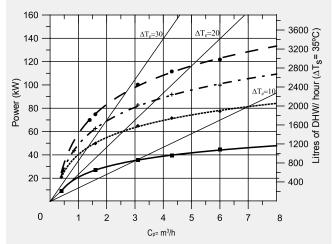

G-800/1000-LW

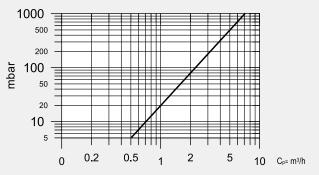
lapesa



G-800-LW

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10°C to 45°C




Pressure losses between the input and output connections of the primary circuit for different flow rates.

G-1000-LW

Performance curves for different flow rates and temperatures of the primary circuit for DHW production from 10° C to 45° C

Lapesa Grupo Empresarial, S.L.

Polígono I. Malpica. Calle A, Parcela 1-A 50016 ZARAGOZA • ESPAÑA Tel. +34 976 465 180 • Fax +34 976 574 393 e-mail: lapesa@lapesa.es • www.lapesa.com

