TANKS AND CRYOGENIC EQUIPMENT FOR LIQUIFIED NATURAL GAS AND OTHER GASES AT CRYOGENIC PRESSURE AND TEMPERATURE

STATIC TANKS

TANKS FOR SERVICE STATIONS

ISO-CONTAINERS

SKIDS

TANKERS FOR TRANSPORT

lapesa

Tanks for LNG

Engineering, development and manufacture of tanks for your projects of pressurized liquefied natural gas at cryogenic temperature.

CE ASME

apesa - Jolutions

TANKS AND CRYOGENIC EQUIPMENT FOR LIQUIFIED NATURAL GAS AND OTHER GASES AT CRYOGENIC PRESSURE AND TEMPERATURE

lapesa

INDEX

STATIC TANKS FOR LNG STORAGE

STATIC TANKS HORIZONTAL AND VERTICAL	8
DIAMETER 2200	10
DIAMETER 3000	12
DIAMETER 3500	14
DIAMETER 3900	16
DIAMETER 4200	18

LNG TANKS FOR SERVICE STATIONS

CRYOGENIC TANKS FOR VEHICULAR NATURAL GAS LC VNG		CRYOGENIC TANKS	FOR VEHICULAR N	NATURAL GAS LC VNG	i 2 ¹
--	--	-----------------	-----------------	--------------------	------------------

ISO-CONTAINERS FOR THE TRANSPORT OF LNG

CRYOGENIC TANK-CONTAINER LTCC*	 22
Chrodeline many contrainer lice	 ~ 4

LNG SKID

CRYOGENIC SKID UNIT LCUA 1000 V	. 24
---------------------------------	------

LNG TANKERS

CRYOGENIC TANKS FOR **LNG**

Double-wall liquefied natural gas storage tanks with vacuum insulation, comprising two concentric tanks, an inner tank in austenitic stainless steel and an outer tank in carbon steel, protected against weathering by special anti-rust surface treatment.

The chamber between the two concentric tanks is filled with a material with a high insulating capacity and hygroscopic material is also added. A vacuum (< $5*10^{-2}$ mbar) is then made in the chamber and this together provides the thermal insulation for the tank.

Lapesa standard tanks have capacities ranging from 5 to 312 m³, for horizontal and vertical installation and with working pressures of 10 bar (9 bar beginning with D3500) and design temperature -196 +50 °C.

Our tanks are designed and manufactured according to European Directive 2014/68/EU or, upon request, to ASME VIII, div.1. They undergo checking and testing during the manufacturing process in line with Lapesa's internal quality standards and EN ISO 9001 certification as well as being supervised by independent quality entities.

All of our cryogenic tanks are supplied with the valve fittings mounted, including a PBU pressure build up unit that maintains the tank's operating pressure in normal working conditions.

This documentation describes the equipment supplied for standard "lapesa" LNG tanks.

We adapt the tank and equipment design to other design pressures or cryogenic fluids, or to the specific requirements from the project or from our clients.

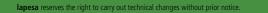
Static tanks specifically for LNG service stations, tankers for LNG transport, handling and service, LNG skids and ISO-containers for maritime and land transport of LNG complete the range of CRYOGENIC TANKS AND EQUIPMENT described in this catalogue.

QUALITY IN CRYOGENIC TANKS FOR LNG

Quality management and planning together with inspections throughout the whole of the manufacturing process of **lapesa** products is an essential part our corporate strategy and a responsibility that is taken on at all levels of the company. Our permanent objective is centred on continually improving the efficiency of our quality management in order to achieve the highest standards of quality in all of our products.

lapesa boasts ISO 9001 quality certifica-

tion since 1993, and manufactures its products in accordance with the European standards and directives on the manufacture of pressurized vessels in general and specifically that referring to tanks for gases at cryogenic temperature, with **EC marking**.



Also in compliance with US ASME VIII, div.1, standards and "U"marking (ASME stamp).

GENERAL CHARACTERISTICS

MAXIMUM DESIGN PRESSURE:

10 bar (9 bar beginning with D3500). For other design pressures please consult.

- MINIMUM DESIGN TEMPERATURE: -196 °C.
- NORMS:

European Pressure Equipment Directive (PED) 2014/68/UE. Spanish norms for pressure tanks. Spanish norms for LNG storage.

MAIN MATERIALS:

Inner tank: austenitic stainless steel.

Outer tank: carbon steel.

Pipes in contact with LNG: austenitic stainless steel (SCH 40).

■ INSULATION:

Perlite in vacuum atmosphere (absolute pressure $<5*10^{-2}$ mbar).

FINISHING:

Internal: clean and dry.

External: Shotblasting SA 2-1/2.

Epoxy polyamide primer (60 microns).

White polyurethane finishing (60 microns).

STATIC TANKS FOR LNG STORAGE HORIZONTAL AND VERTICAL TANKS

EQUIPMENT INCLUDED

- Vent pipe with flame arrester, orientable from valves zone.
- Sensor for vacuum measurement type "Teledyne".
- Unified filling connection DN50.
- Electronic level by differential pressure brand SAMSON (model Media 7).
- Pressure Build Up System (PBU) made of aluminum with mechanical regulator.
- Pressure relief system with manifold.
- Manual cryogenic stopvalves with extended spindle.

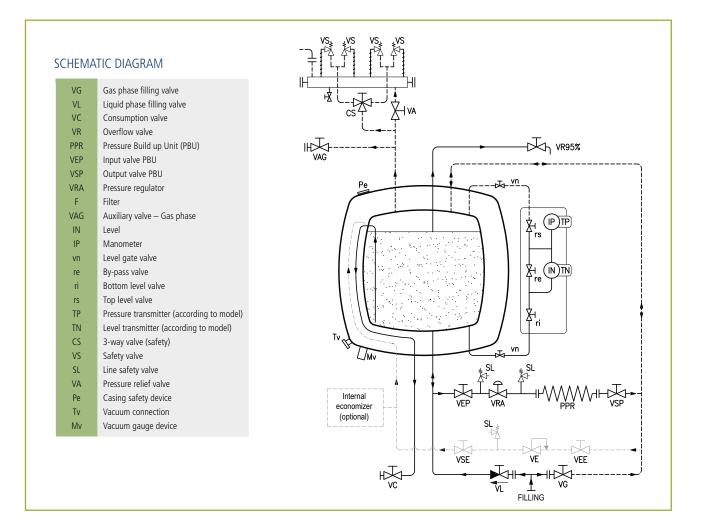
OPTIONAL EQUIPMENT

- Different design pressures.
- SPECIAL NORMS: local norms, ASME code (with stamp), EN, ISO, ...
- Internal economizer.
- Kit economizer for external installation (regulator + filter + stopvalve).
- Inner tank resistant to vacuum.
- Mechanical level by differential pressure, brand WIKA.
- Several PBU sizes for different consumption needs.
- Piloted stopvalves.
- Multilayer insulation.
- Different valve brands.
- Double filling valve.
- Double overflow valve.
- Double level indicator.

EXAMPLE LAPESA LNG TANKS DENOMINATION: LC6H22

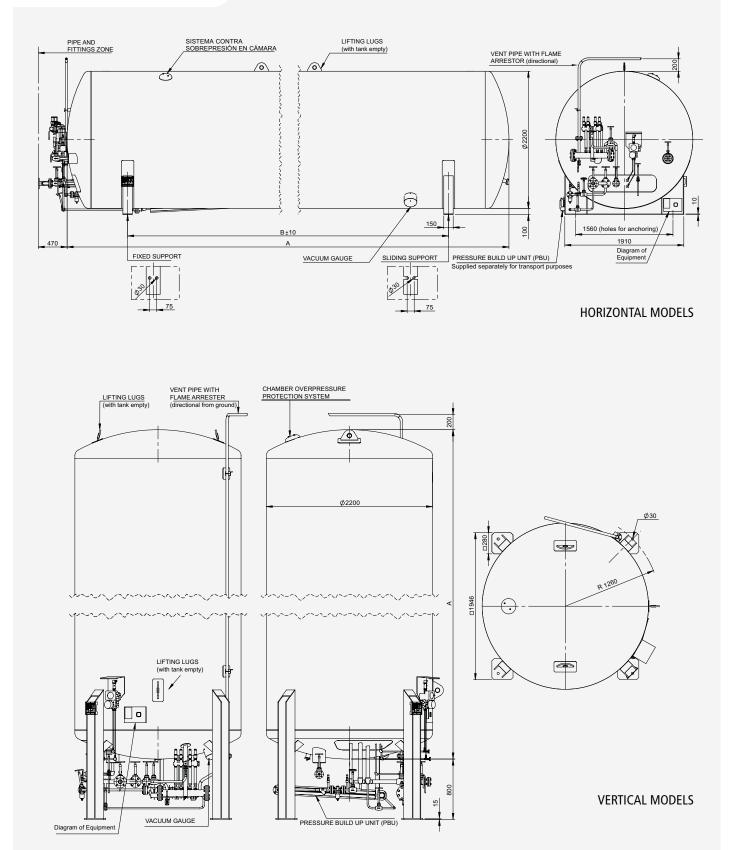
- LC lapesa cryogenic tank
- 6 nominal volume 6 m³H horizontal installation
- 22 diameter 2.200 mm

lapes


DIAMETER 2200

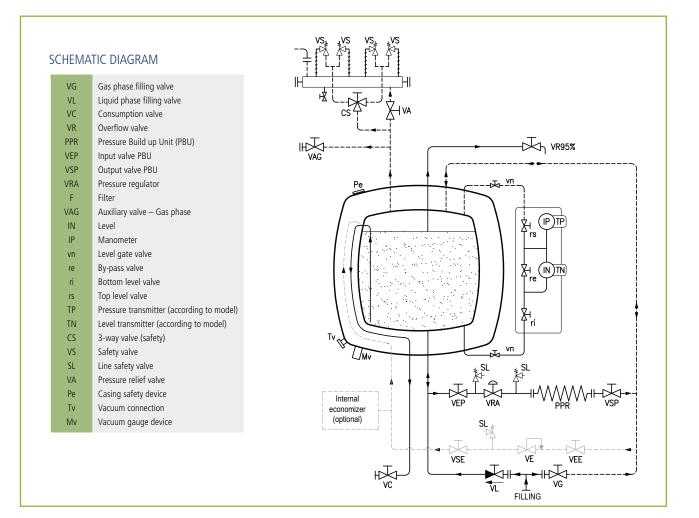
HORIZONTAL MODELS		LC5H22	LC6H22	LC11H22	LC16H22	LC20H22
Nominal volume	m ³	5	6	11	16	20
Theoretical volume	m ³	5,0	6,2	11,0	15,7	19,9
Usable capacity ⁽¹⁾	Tm	2,2	2,7	4,8	6,9	8,7
Length (A)	mm	2.963	3.463	5.463	7.463	9.243
Distance between supports (B)	mm	1.000	1.500	3.500	5.500	7.300
Theoretical tare (Tn)	Tm	2,2	2,6	3,9	5,2	7,0

VERTICAL MODELS		LC5V22	LC6V22	LC11V22	LC16V22	LC20V22
Nominal volume	m ³	5	6	11	16	20
Theoretical volume	m ³	5,0	6,2	11,0	15,7	19,9
Usable capacity (1)	Tm	2,2	2,7	4,8	6,9	8,7
Height (A)	mm	2.963	3.463	5.463	7.463	9.243
Theoretical tare (Tn)	Tm	2,3	2,7	4,1	5,5	7,3


Standard PPR for consumption of 400 Nm3/h at 3 bar (other capacities: 1000, 2000, 3000 and 4000 Nm3/h)

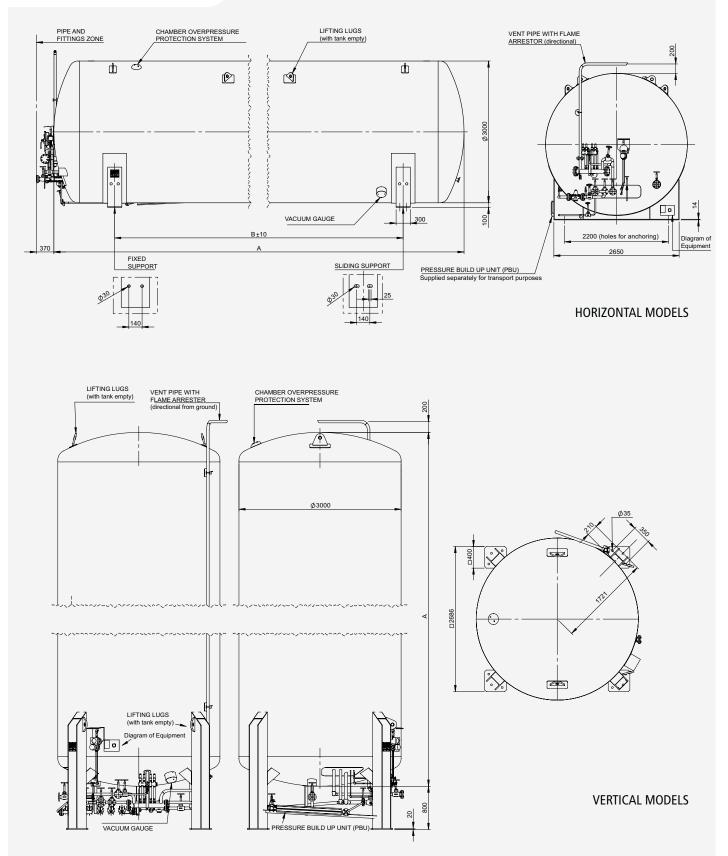
(1) The indicated usable capacity has been calculated considering the theoretical volume (without cooling), a maximum filling of 95% and a liquid density of 460 kg/m³

GENERAL DIMENSIONS


DIAMETER 3000

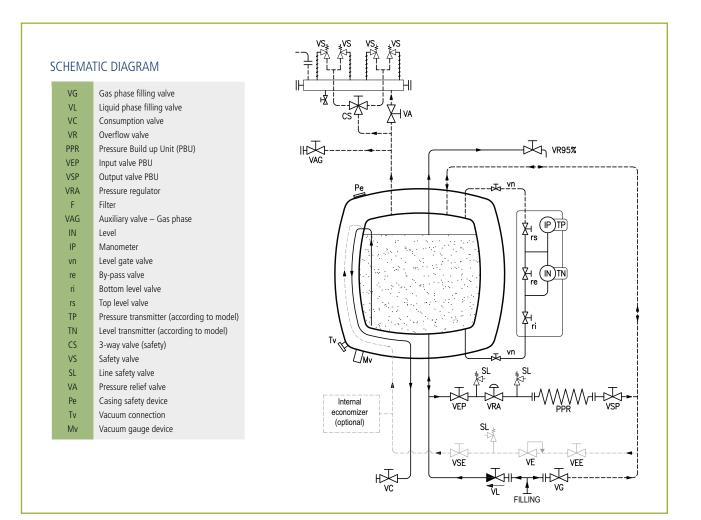
HORIZONTAL MODELS		LC30H30	LC40H30	LC50H30	LC60H30	LC80H30
Nominal volume	m ³	30	40	50	60	80
Theoretical volume	m ³	30,6	40,3	49,9	59,8	79,2
Usable capacity ⁽¹⁾	Tm	13,4	17,6	21,8	26,1	34,6
Length (A)	mm	7.374	9.374	11.334	13.374	17.374
Distance between supports (B)	mm	4.800	6.800	8.800	10.800	14.800
Theoretical tare (Tn)	Tm	10,7	13	14,6	17,7	22,5

VERTICAL MODELS		LC30V30	LC40V30	LC50V30	LC60V30	LC80V30
Nominal volume	m ³	30	40	50	60	80
Theoretical volume	m ³	30,6	40,3	49,9	59,8	79.2
Usable capacity ⁽¹⁾	Tm	13,4	17,6	21,8	26,1	34,6
Height (A)	mm	7.374	9.374	11.334	13.374	17.374
Theoretical tare (Tn)	Tm	11,1	13,5	15,8	18,2	23,2


PPR standard para consumo de 1000 Nm³/h a 3 bar (otras capacidades: 2000, 3000 y 4000 Nm³/h)

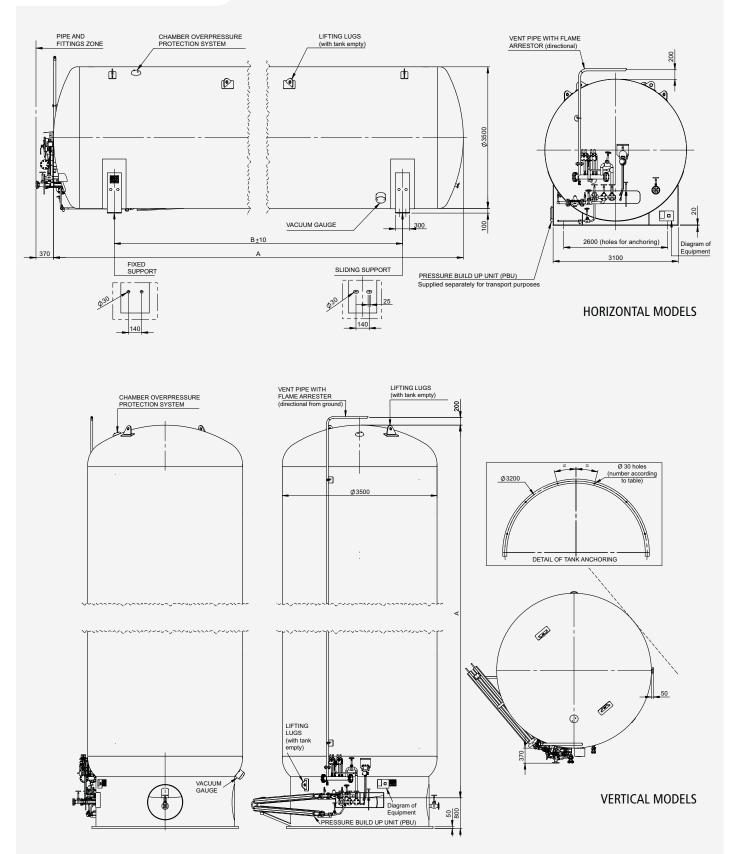
(1) The indicated usable capacity has been calculated considering the theoretical volume (without cooling), a maximum filling of 95% and a liquid density of 460 kg/m³

GENERAL DIMENSIONS


DIAMETER 3500

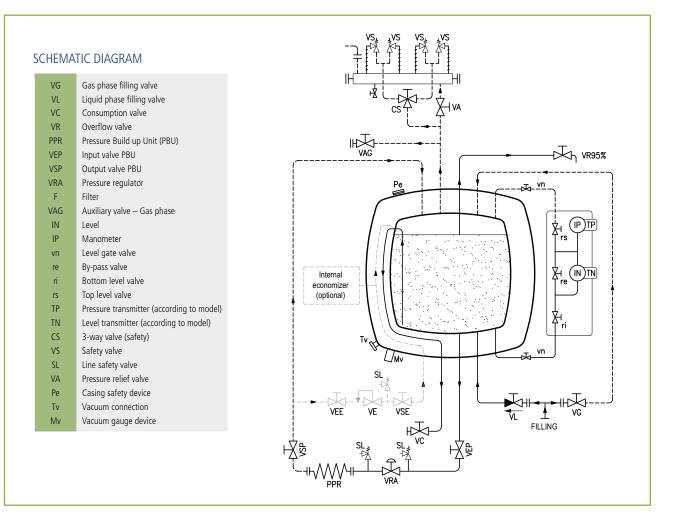
HORIZONTAL MODELS		LC80H35	LC80H35 LC92H35*		LC120H35
Nominal volume	m ³	80	92	106	120
Theoretical volume	m³	79,9	91,5	105,5	119,5
Usable capacity ⁽¹⁾	Tm	34,9	40,0	46,1	52,2
Length (A)	mm	12.547	14.217	16.217	18.217
Distance between supports (B)	mm	9.700	11.400	13.400	15.400
Theoretical tare (Tn)	Tm	19,3	21,8	24,7	27,6

VERTICAL MODELS		LC80V35 LC92V35		LC106V35	LC120V35
Nominal volume	m ³	80	92	106	120
Theoretical volume	m ³	79,9	91,6	105,5	119,5
Usable capacity ⁽¹⁾	Tm	34,9	40	46,1	52,2
Height (A)	mm	12.467	14.137	16.137	18.117
Theoretical tare (Tn)	Tm	19,6	22,1	25,1	28,1


PPR standard para consumo de 1000 Nm³/h a 3 bar (otras capacidades: 2000, 3000 y 4000 Nm³/h)

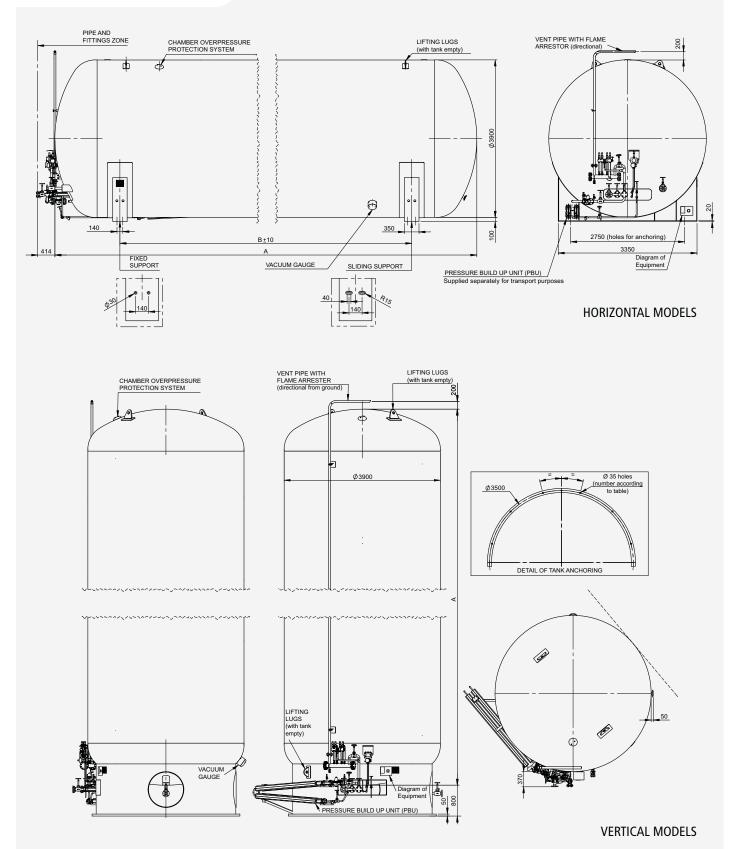
(1) The indicated usable capacity has been calculated considering the theoretical volume (without cooling), a maximum filling of 95% and a liquid density of 460 kg/m³

GENERAL DIMENSIONS


DIAMETER 3900

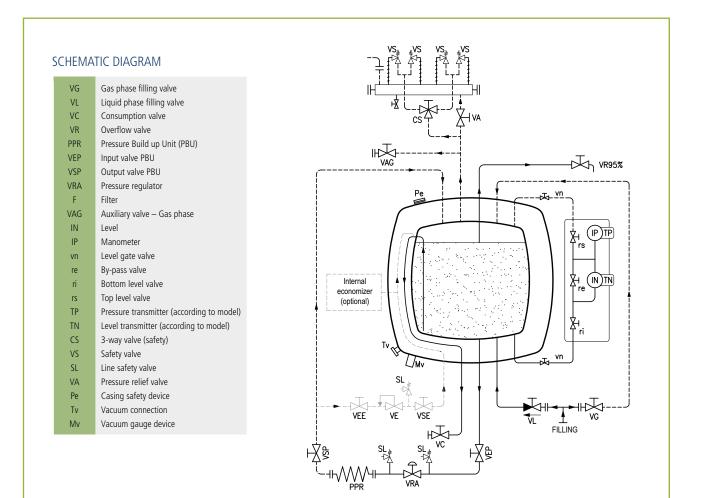
HORIZONTAL MODELS		LC107H39	LC120H39	LC130H39	LC150H39	LC200H39	LC226H39	LC245H39
Nominal volume	m³	107	120	130	150	200	226	245
Theoretical volume	m ³	107,5	118,8	130,5	150,4	200,0	226,1	245,0
Usable capacity (1)	Tm	47,0	51,9	57,0	65,7	87,4	98,8	107,1
Length (A)	mm	13.092	14.372	15.692	17.892	23.384	26.292	28.392
Distance between supports (B)	mm	10.000	11.000	12.500	14.800	20.000	23.200	25.200
Theoretical tare (Tn)	Tm	28,0	30,5	32,9	37,9	47,6	54,1	58,3

VERTICAL MODELS		LC107V39	LC120V39	LC130V39	LC150V39	LC200V39	LC226V39	LC245V39
Nominal volume	m ³	107	120	130	150	200	226	245
Theoretical volume	m³	107,5	118,8	130,5	150,4	200,0	226,1	245,0
Usable capacity ⁽¹⁾	Tm	47,0	51,9	57,0	65,7	87,4	98,8	107,1
Height (A)	mm	13.092	14.372	15.692	17.892	23.382	26.292	28.392
Theoretical tare (Tn)	Tm	28,6	31,1	33,6	38,7	48,6	55,2	59,5


PPR standard para consumo de 1000 Nm³/h a 3 bar (otras capacidades: 2000, 3000 y 4000 Nm³/h)

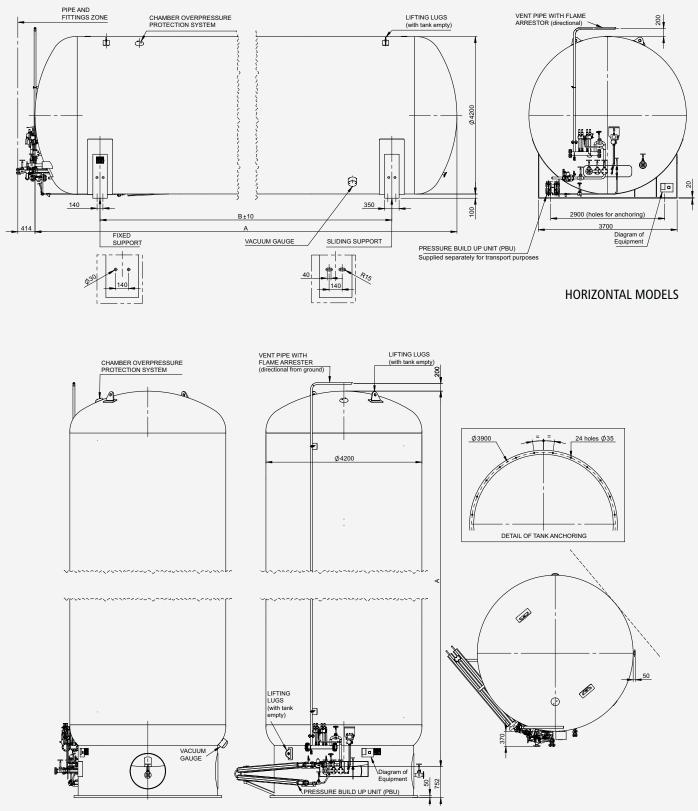
(1) The indicated usable capacity has been calculated considering the theoretical volume (without cooling), a maximum filling of 95% and a liquid density of 460 kg/m³

GENERAL DIMENSIONS


DIAMETER 4200

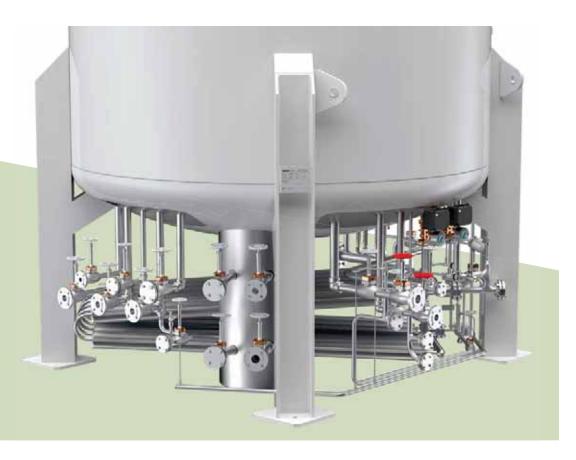
HORIZONTAL MODELS		LC205H42	LC227H42	LC248H42	LC269H42	LC291H42	LC312H42
Nominal volume	m ³	205	227	248	269	291	312
Theoretical volume	m ³	205,5	226,8	248,1	269,5	290,8	312,1
Usable capacity ⁽¹⁾	Tm	89,8	99,1	108,4	117,8	127,1	136,4
Length (A)	mm	20.745	22.745	24.745	26.745	28.745	30.745
Distance between supports (B)	mm	17.500	19.500	21.500	23.500	25.500	27.500
Theoretical tare (Tn)	Tm	49,6	54,3	58,9	63,6	68,2	72,8

VERTICAL MODELS		LC205V42	LC227V42	LC248V42	LC269V42	LC291V42	LC312V42
Nominal volume	m ³	205	227	248	269	291	312
Theoretical volume	m ³	205,5	226,8	248,1	269,5	290,8	312,1
Usable capacity (1)	Tm	89,8	99,1	108,4	117,8	127,1	136,4
Height (A)	mm	20.745	22.745	24.745	26.745	28.745	30.745
Theoretical tare (Tn)	Tm	50,5	55,2	59,9	64,6	69,3	74,1


PPR standard para consumo de 1000 Nm³/h a 3 bar (otras capacidades: 2000, 3000 y 4000 Nm³/h)

(1) The indicated usable capacity has been calculated considering the theoretical volume (without cooling), a maximum filling of 95% and a liquid density of 460 kg/m³

GENERAL DIMENSIONS


VERTICAL MODELS

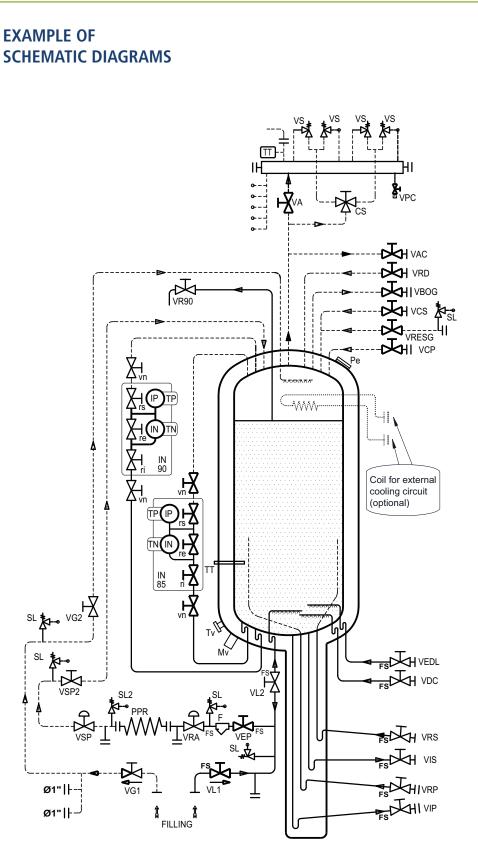
LNG TANKS FOR SERVICE STATIONS

LC GNV

Tanks for the supply of natural gas for vehicles at Service Stations, for CNG (compressed natural gas) and LNG (liquefied natural gas) or both at the same time.

GENERAL CHARACTERISTICS

- Tanks designed and adapted to the needs and characteristics of each individual supply station.
- Tanks adapted to the supply plant design, incorporating all the necessary outputs and connections for each function:
 - LNG connection.
 - CNG connection.
 - Pump returns, saturation return.
 - Extra connections for consumption at the station itself...
- Standard design pressure 18 bar. Other values of design pressure available upon request.
- PBU standard for consumption of 1000 Nm³/h at 14 bar.
- Tanks with "cold converter" or "thermosiphon" system.
- Compliance to norms ISO 16923 and ISO 16924, compliance to Gas Regulations.


(Optional) refrigeration coil to avoid boil-off.

Consult us about your project requirements!

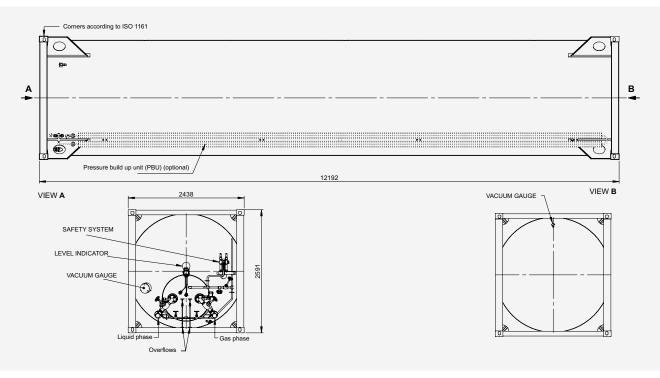
LNG TANKS FOR SERVICE STATIONS

)
n
)

ISO-CONTAINERS FOR LNG TRANSPORT

LTCC..*

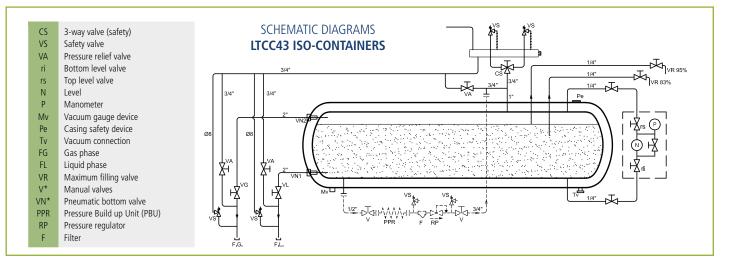
Cryogenic tank-container for transporting liquefied natural gas LNG (UN 1972), methane (UN 1972), ethane (UN 1961), ethylene (UN 1038), nitrogen (UN 1977), with cryogenic insulation, cryogenic vacuum insulation and non-compressible insulating material.


GENERAL CHARACTERISTICS

- Tank-container for transporting cryogenic liquefied gas.
- Thermal insulation with high vacuum and multilayer.
- Container type: 1AA according to ISO 668.
- Applicable European Directives: 2010/35/EU (Pi marking), 2008/68/EC.
- Standards applied: ADR, RID, ISO, CSC, IMDG, EN13530.
- Valid for transport with partial loads.
- Number of compartments: 1.

ISO-CONTAINERS FOR LNG TRANSPORT

ISO-CONTAINER DESIGN DATA⁽¹⁾


- Geometric capacity: 46,5 m³.
- Maximum working pressure: 9 bar.
- Working temperature: -196, +50 °C.
- Empty weight: approximately 9,5 tons.

FINISHES

- PRIMER: Polyamide epoxy (60 microns).
- TOP COAT: White polyurethane (60 microns). Total thickness: 120 microns.
- INTERIOR: Particle-free and dry.

EQUIPMENT AND FEATURES

- Connectors for filling and emptying according to client needs
- Manual stopvalves, globe type, with extended spindle for cryogenic use
- Bottom valves with pneumatic actuation, CAEN-type, with non-return feature
- Two overflow pipes according to client needs.

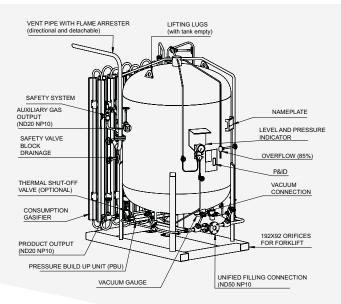
LNG SKIDS

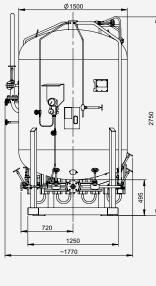
LCUA 1000 V

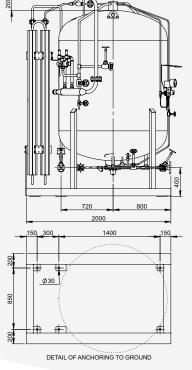
Cryogenic skid unit for liquefied natural gas LNG (UN 1972), methane (UN 1972), ethane (UN 1961), ethylene (UN 1038), nitrogen (UN 1977). EC marking (Directive 2014/68/EU).

GENERAL FEATURES

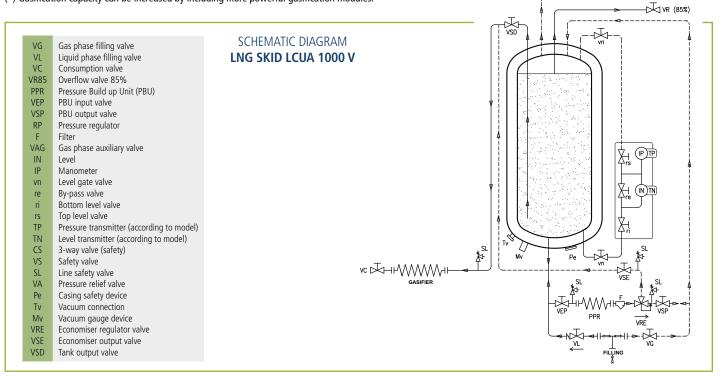
- "Plug and play" equipment.
- EC marking (Directive 2014/68/EU).
- Geometric volume: 1,000 litres.
- Maximum allowable pressure: 10 bar (other pressures available upon request).
- Approximate weight: 1,200 kg.
- Modular.
- Insulation system: perlite in vacuum chamber.
- Easy to transport vertically on truck. 192 x 92 mm orifices for handling with forklift, when empty.


Good use of space.


FITTINGS INCLUDED


- Pressure build-up unit (PBU).
- Environmental gasifier to consumption.
- Auxiliary gas phase connection.
- Economiser.
- ND40 flame arrester, directional and detachable.
- "Teledyne" type vacuum gauge.
- Media 05 (Samson) type level and pressure indicator. Options: electric, with level transmitter and pressure transmitter.

LNG SKIDS



MODULAR EQUIPMENT

- STD 35 Nm³/h ambient gasifier. (Extendable to 70 Nm³/h and 105 Nm³/h). Possibility of extending after installation.*
- Elevated frame.
- PBU: 1/2" input/output piping. Max. capacity 100 Nm³/h at 3 bar (extendable at request).
- Filling lines.
- 1/2" economiser and economiser-regulator valve.
- ND20 auxiliary gas phase connection. (Optional temperature controlled shut-off valve).
- Safety: Flame arrester; double safety valve; 3-way valve; discharge manifold with drainage system and manual drainage valve.

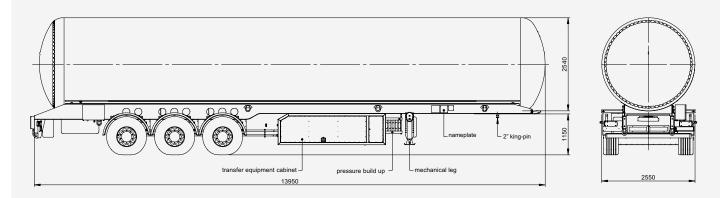
(*) Gasification capacity can be increased by including more powerful gasification modules.

LNG TANKERS TANKER FOR THE **TRANSPORT AND SUPPLY** OF LNG

LTC58

Cylindrical cryogenic tanker for the transport and supply of LNG, 58 m³ capacity, 44 TN MAM chassis.

CHARACTERISTICS STANDARD TANKER


- Products to be transported: cryogenic liquefied gases class 2: LNG (UN1972), methane (UN1972), ethane (UN1961), ethylene (UN1038), etc.
- Manufactured according to applicable European Directives: 2010/35/UE (Pi marking), 2014/103/UE.
- Application norms: ADR, EN13530, IM08 (optional).
- Maximum working pressure: 3 bar.
- Design temperature: -196 °C + 50 °C.
- Inner tank material: Austenitic stainless steel.
- Thermal insulation multilayer with high vacuum.
- Finishing with anticorrosive primer (high grade cataphoresis for chassis) and white polyurethane (blue color for chassis).

We adapt to the needs of our clients. Shown is an example of our standard tanker. Other options available upon request.

LNG TANKERS TANKER FOR THE TRANSPORT AND SUPPLY OF LNG

ELEMENTS INCLUDED IN STANDARD TANKER

- Internal baffles for partial loads.
- Cabinet in central area, accessible from either left or right side.
- Rolling unit characteristics:
 - Three axles (two wheels per axle) with 20" bushing.
 - King-pin 2".
 - Pneumatic suspension.
 - Full frame, for optimal and long-lasting weight distribution.
 - Axles SAF or similar.
 - Aluminum rims.
 - ADR electrical installation.
 - Parking brake with 2 axis pneumatic actuators.
 - EBS brakes S2/SM. Disc brake 430 x 45.
 - Axis-type elevator.
 - Telescopic mechanical feet.
 - Rubber mudguards, keys for wheels, aluminum rear anti-embedment device, toolbox, two fire-extinguishers with box, etc.
 - Others: please consult.

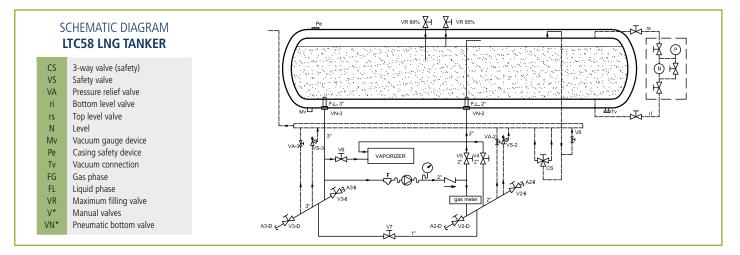
Japesa Solutions

GENERAL DIMENSIONS FOR A 44 TON TANKER

- Nominal capacity: 58 m³.
- Approximate tanker empty weight: 12,5 tons.
- Approximate loading capacity (assuming 7,5 ton tractor head):
 - 24 tons (total 44 ton).
 - 23 ton (with LNG 3 bar at 95%).
 - 21 ton (with LNG 0 bar at 89%).

LNG EQUIPMENT

- Discharge pump.
- Pressure elevator.
- Volumetric counter.
- Cabinet with door.
- Mechanical level indicator by differential pressure.
- Internal bottom valves with non-return feature included.
- Cryogenic stopvalves.
- Pressure relief valves in pipes, manual and automatic, connected to vent pipe.
- P&ID adapted to client needs.



LNG TANKERS

TANKER FOR THE TRANSPORT AND SUPPLY OF LNG

LTC58

SAFETY/EMERGENCY SYSTEMS

- The tankers include 6 emergency pushbuttons, distributed in various places. When manually actuated, they close the bottom valves of the tanker and the pump enters stop mode.
- Closed cabinet detector. When the transfer cabinet is closed, the bottom valves stay closed and the pump enters stop mode.
- Parking brake. The bottom valves can only be opened when this brake is activated.
- Anti-start system. If the driver starts driving with the cabinet open, the system acts on the brakes, braking the tanker. The system does not act when speed is higher than 5 km/h.
- Safety valves against LNG overpressure, with manifold.

HYDRAULIC INSTALLATION

■ For the correct operation of the hydraulic circuit that feeds the LNG pump, the tractor head must include a power supply, hydraulic pump, oil tank, refrigeration system, etc...

FINAL DOCUMENTATION

- Manufacturing dossier
- ADR documentation
- Instructions manual
- Technical drawing
- Full documentation about vehicle homologation

EXAMPLES OF OPTIONAL ELEMENTS

- Inertizing
- IMO 8 (allows the transport of the tank on short distances)
- Finishing with client logo
- Different brands for the equipment
- Extras for rolling unit:
 - Polished rims
 - Third axle auto-directional
 - Integral LED lights
 - Weight distributor

Cryogenic tanker for transport and supply of GNL Ask us about your project!

WORLDWIDE PROJECTS TANKSRÉSERVOIRSBEHÄLTERDEPÓSITOS

INTERNATIONAL MARKETS

EUROPA ANDORRA

GERMANY ARMENIA AUSTRIA BELGIUM BULGARIA FINLAND FRANCE HOLLAND IRELAND ITALY NORWAY POLAND PORTUGAL UNITED KINGDOM RUSSIA **SLOVENIA** SPAIN SWITZERLAND

AFRICA

ALGERIA ANGOLA BENIN CAMEROON CHAD **IVORY COAST** GABON **REUNION ISLAND** KENYA MADAGASCAR MOROCCO MAURITANIA NAMIBIA NIGER NIGERIA SOUTHAFRICA TANZANIA TUNISIA

AMERICA ARGENTINA BOLIVIA CHILE COLOMBIA CUBA DOMINICAN REP. GUADALUPE ISLAND MEXICO PERU

MIDDLE EAST

EMIRATES JORDANIA KUWAIT LEBANON OMAN QATAR SAUDI ARABIA **Japesa**

ASIA BANGLADESH MONGOLIA

SRI LANKA VIETNAM

OCEANIA AUSTRALIA

NEW ZELAND

SOUTH POLE ANTARCTICA

. . .

lapesa

lapesa

lapesa

lapesa

lapesa

lapesa

lapesa

lapesa

lapes

lapesa

lapesa

lape

lapesa

lapesa lapesa

lapesa lapesa lapesa lapesa lapesa lapesa

lapesa lapesa lapesa lapesa lapesa lapesa lapesa

lapesa lapesa lapesa lapesa

lapesa lapesa

lapesa

lapesa

lapesa

lapesa

lapesa

lapesa

lapesa lapesa lapesa lapesa sa lapesa

lapesa

Lapesa Grupo Empresarial Pol. Ind. Malpica - Calle A, Parcela 1-A 50016 ZARAGOZA (España) Tel.: 976 465 180 / Fax: 976 574 393 e-mail: lapesa@lapesa.es www.lapesa.com

